Tìm kiếm Đề thi, Kiểm tra

Quảng cáo

Quảng cáo

Quảng cáo

Hướng dẫn sử dụng thư viện

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (04) 66 745 632
  • 0166 286 0000
  • contact@bachkim.vn

Chuyên đề và cách giải hệ phương trình bậc nhất hai ẩn

Nhấn vào đây để tải về
Hiển thị toàn màn hình
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Thị Hiền
Ngày gửi: 19h:49' 17-07-2017
Dung lượng: 269.5 KB
Số lượt tải: 151
Số lượt thích: 2 người (Hoàng Quang Huynh, Nguyễn Thị Hiền)

HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN SỐ

A. MỤC TIÊU: Học sinh nắm được
- Khái niệm hệ phương trình bậc nhất hai ẩn: và Cách giải
- Một số dạng toán về hệ phương trình bậc nhất hai ẩn

B. NỘI DUNG:
I: CÁCH GIẢI HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
Dạng 1: Giải hệ phương trình có bản và đưa về dạng cơ bản
1.- Vận dụng quy tắc thế và quy tắc cộng đại số để giải các hệ phương trình sau:
Giải hệ phương trình bằng phương pháp thế



Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = (2;1)
Giải hệ phương trình bằng phương pháp cộng đại số




Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = (2;1)


2.- Bài tập:
Bài 1: Giải các hệ phương trình
1)  2) 3) 4) 

5)  6)  7) 
Bài 2: Giải các hệ phương trình sau:
1)  2) 
3)  4) 
5)  6) 

Dạng 2. Giải các hệ phương trình sau bằng cách đặt ẩn số phụ





Bài tập:
1) 2)  3) 
4)  5)  6)
7) 8) 
Dạng 3. Giải và biện luận hệ phương trình
Phương pháp giải:
Từ một phương trình của hệ tìm y theo x rồi thế vào phương trình thứ hai để được phương trình bậc nhất đối với x
Giả sử phương trình bậc nhất đối với x có dạng: ax = b (1)
Biện luận phương trình (1) ta sẽ có sự biện luận của hệ
i) Nếu a=0: (1) trở thành 0x = b
- Nếu b = 0 thì hệ có vô số nghiệm
- Nếu b0 thì hệ vô nghiệm
ii) Nếu a 0 thì (1)  x = , Thay vào biểu thức của x ta tìm y, lúc đó hệ phương trình có nghiệm duy nhất.
Ví dụ: Giải và biện luận hệ phương trình: 
Từ (1)  y = mx – 2m, thay vào (2) ta được:
4x – m(mx – 2m) = m + 6 (m2 – 4)x = (2m + 3)(m – 2) (3)
i) Nếu m2 – 4  0 hay m2 thì x = 
Khi đó y = - . Hệ có nghiệm duy nhất: (;-)

ii) Nếu m = 2 thì (3) thỏa mãn với mọi x, khi đó y = mx -2m = 2x – 4
Hệ có vô số nghiệm (x, 2x-4) với mọi x  R
iii) Nếu m = -2 thì (3) trở thành 0x = 4 . Hệ vô nghiệm
Vậy: - Nếu m2 thì hệ có nghiệm duy nhất: (x,y) = (;-)
- Nếu m = 2 thì hệ có vô số nghiệm (x, 2x-4) với mọi x  R
- Nếu m = -2 thì hệ vô nghiệm
Bài tập: Giải và biện luận các hệ phương trình sau:
1)  2)  3) 
4)  5)  6) 
DẠNG 4: XÁC ĐỊNH GIÁ TRỊ CỦA THAM SỐ ĐỂ HỆ CÓ NGHIỆM THỎA MÃN ĐIỀU KIỆN CHO TRƯỚC
Phương pháp giải:
Giải hệ phương trình theo tham số
Viết x, y của hệ về dạng: n +  với n, k nguyên
Tìm m nguyên để f(m) là ước của k

Ví dụ1: Định m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên:

HD Giải:


để hệ có nghiệm duy nhất thì m2 – 4 0 hay m 
Vậy với m  hệ phương trình có nghiệm duy nhất

Để x, y là những số nguyên thì m + 2  Ư(3) = 
Vậy: m + 2 = 1, 3 => m = -1; -3; 1; -5
Bài Tập:
Bài 1:
Định m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên:

Bài 2:
Định m, n để hệ phương trình sau có nghiệm là (2; -1)

HD:
Thay x = 2 ; y = -1 vào hệ ta được hệ phương trình với ẩn m, n
Định
 
Gửi ý kiến