Tìm kiếm Đề thi, Kiểm tra

Quảng cáo

Quảng cáo

Hướng dẫn sử dụng thư viện

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (04) 66 745 632
  • 0166 286 0000
  • contact@bachkim.vn

gửi câu d bài hình cho An

Nhấn vào đây để tải về
Hiển thị toàn màn hình
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Lê Thanh Sơn
Ngày gửi: 21h:59' 17-11-2017
Dung lượng: 35.5 KB
Số lượt tải: 22
Số lượt thích: 3 người (Nguyễn Minh Sang, Bùi Thanh Liêm, Nguyễn Nguyên An)
Bài Hình 9
Cho nửa đường tròn tâm O đường kính AB=2R. Trên nửa đường tròn lấy điểm M sao cho MB=R. Tiếp tuyến tại M của đường tròn cắt các tiếp tuyến Ax, By lần lượt tại C và D (Ax và By cùng thuộc một nửa mặt phẳng có bờ AB chứa điểm M)
a/.CM: Tam giác COD vuông và AC+BD=CD
b/.Tính OC theo R?
c/.BC cắt đường tròn tại F (F khác B). Đường thẳng qua O vuông góc với BC cắt By tại E.
CM: EF là tiếp tuyến của đường tròn (O).
d/.Gọi K là giao điểm của OE và BC. CM: DM=DK




d) Gọi I là giao điểm của OD và MB
Ta có MD = DB và OM = OB = R ⇒ OD là đường trung trực của MB
⇒ IM=IB và ID //ME (cùng ⊥MB) ⇒ DE = DB(định lí đường trung bình trong
⇒ DK là đường trung tuyến ứng với cạnh huyền cuả △BKE vuông tại K
⇒DK = DB = DM
No_avatarf

Nguyên An cảm ơn Thầy Cô Lê Thanh Sơn rất nhiều.

No_avatarf

An trao đổi cùng Thầy Sơn: Ta có E là giao điểm của tia OK và tia By. Chưa có E thuộc tia AM. Nên chưa kết luận được tia ID//ME. An bối rối chổ này nhờ Thầy viết chi tiết hơn. Cảm ơn Thầy.

No_avatarf

Tứ giác ACMO nội tiếp⇒ ∠MAO = ∠MCO ( cùng chắn cung OM)
∠MAO = ∠MBE (cùng chắn cung MB của (O)) và Tứ giác MCOK nội tiếp ⇒∠MCO = ∠MKE
⇒∠MBE = ∠MKE ⇒  tứ giác BKME nội tiếp ⇒ ∠BME =∠BKE = 90°⇒ME⊥MB ⇒ ID // ME (cùng ⊥MB)

No_avatarf

Nguyên An cảm ơn Thầy Lê Thanh Sơn đã giải thích giúp.

 
Gửi ý kiến