Violet
Dethi

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

18 câu hỏi đáp về Số học& Đại số .doc

Nhấn vào đây để tải về
Hiển thị toàn màn hình
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn: st
Người gửi: Phạm Huy Hoạt
Ngày gửi: 09h:27' 09-09-2013
Dung lượng: 10.7 KB
Số lượt tải: 157
Số lượt thích: 0 người
18 câu hỏi đáp về Số học & Đại số
Khi học toán sơ cấp (số học & Đại số) ở chương trình phổ thông, hầu hết các khái niệm, định nghĩa… HS phải công nhận một cách “áp đặt”. Tài liệu này giúp bạn hiểu thêm về ý nghĩa, nguồn gốc và những lí giải lí thú qua ngững câu hỏi và giải thích đơn giản, dễ hiểu:
1. Hình học đã được phát triển ở hình thức tiên đề, còn Số học và Đại số thì không. Tại sao vậy?
Nguyên nhân nằm ở nguồn gốc của chúng.
Hình học đã được phát triển bởi người Ai Cập, là kết quả đo đạc đất đai của họ. Vào thế kỉ thứ 7 trước Công nguyên, hình học đã lan truyền từ Ai Cập sang Hi Lạp, nơi nó dần dần phát triển thành một lí thuyết toán học.
Như vậy, hình học là một lí thuyết toán học có nguồn gốc Hi Lạp. Người Hi Lạp đã gắn giá trị lớn cho các chứng minh và vì thế đã phát triển hình học theo hướng tiên đề.
Toán học của những con số của chúng ta có nguồn gốc của nó thuộc về toán học của người Hindu, người Arab và người Babylon.
Họ không quan tâm đến việc đưa ra các chứng minh nên toán học của những con số đã được truyền lại cho chúng ta đơn thuần ở dạng một tập hợp những quy tắc tính toán không liên quan với nhau mấy.
Xu hướng hiện đại là trình bày tất cả các nghiên cứu toán học theo hình thức tiên đề.
2. Ý nghĩa của từ “arithmetic” là gì?
Từ “arithmetic” (sự tính/số học) có nghĩa là “nghệ thuật tính toán” nên bài học ở trường tiểu học của chúng ta là một tập hợp gồm những lời giải của những bài toán đa dạng và các quy tắc tính toán.
Nhưng theo thời gian arithmetic đã biến thành lí thuyết của những con số.
3. Số học là một trừu tượng phải không?
Số học thể hiện những nỗ lực sớm nhất của trí tuệ con người đối với sự trừu tượng.
Như vậy, khi chúng ta nói, 2 + 3 = 5, đó là một phát biểu không phải nói về những vật đặc biệt như cái bút chì hay đồng xu, mà về tất cả những vật có thể đếm được vẫn giữ được nhận dạng riêng của chúng.
Ở đây, bản chất của các vật, tức là chúng là cái bút chì hay đồng xu hay cây cối hay bất kì cái gì khác, dù sống hay không sống, vân vân... không còn liên quan nữa, và phát biểu thành ra đúng theo một kiểu chung chung.
Các con số được đặt tên (một, hai, ba,...) và kí hiệu (1, 2, 3,...) và được sử dụng như những vật cụ thể bền bỉ đến mức chúng ta có xu hướng quên mất rằng chúng ta đang giải quyết các khái niệm chứ không phải các vật cụ thể.
4. Phát biểu 2 + 3 = 5 có đúng cho mọi loại vật hay không?
Không. Nếu các vật không giữ được nhận dạng riêng của chúng, thì phát biểu trên có thể không đúng đối với chúng.
Ví dụ, thêm 2 giọt nước vào 3 giọt nước có thể chỉ tạo ra một giọt nước – một giọt nước lớn.
Tương tự, nếu nhốt 2 con hổ và 3 con thỏ chung một chuồng, thì sau một lúc nào đó có thể ta thấy chỉ còn hai con vật thôi – hai con hổ sẽ ăn thịt 3 con thỏ cùng đường mạt lộ kia.
Một ví dụ nữa, một lực bằng 2 đơn vị và một lực khác bằng 3 đơn vị, hai lực cùng tác dụng vào một vật có thể cho hợp lực bằng bất kì giá trị nào nằm giữa 1 và 5 đơn vị lực tùy thuộc vào góc giữa chúng.
Nếu chúng tác dụng ngược chiều nhau, thì tổng của chúng sẽ bằng một đơn vị, còn nếu chúng tác dụng cùng chiều nhau, thì tổng của chúng sẽ bằng 5 đơn vị.
Tuy nhiên, tổng của chúng sẽ bằng 4 đơn vị nếu góc giữa chúng bằng 75,5 độ.
5. Sự mở rộng khái niệm số có nghĩa là gì?
Những con số đầu tiên gắn liền với những vật cụ thể nên khái niệm số ban đầu hạn chế với chỉ những con số nguyên. Các phân số xuất hiện tự nhiên sau đó và sự ra đời của một kí hiệu cho số không là một sự kiện lớn, còn các số âm được thừa nhận lại là một sự miễn cưỡng lớn.
Những con số như thế gộp chung lại được gọi là số hữu tỉ.
Một lần nữa sự mở rộng này bắt đầu, và đến lượt số vô tỉ và số phức được công nhận.
Một số vô tỉ là con số không thể biểu diễn được bằng thương của hai số nguyên. Ví dụ, √2 là một số vô tỉ.
Số vô tỉ và số hữu tỉ được gọi chung
 
Gửi ý kiến

↓ CHÚ Ý: Bài giảng này được nén lại dưới dạng RAR và có thể chứa nhiều file. Hệ thống chỉ hiển thị 1 file trong số đó, đề nghị các thầy cô KIỂM TRA KỸ TRƯỚC KHI NHẬN XÉT  ↓