Violet
Dethi
8tuoilaptrinh

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

BÀI TẬP NÂNG CAO CHƯƠNG 3

Nhấn vào đây để tải về
Hiển thị toàn màn hình
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Bùi Anh Tuấn
Ngày gửi: 07h:36' 15-06-2018
Dung lượng: 94.0 KB
Số lượt tải: 516
Số lượt thích: 0 người
BÀI TẬP ĐỊNH LÝ TALÉT

Bài 1:
a, Cho đoạn thẳng AB , M là 1 điểm nằm trong đoạn thẳng AB sao cho  tính tỷ số 
b, Cho AB =6cm 1 điểm C ở trong đường thẳng AB sao cho CA=3,6 cm trên đường thẳng AB vẽ về phía B hãy tìm một điểm D sao cho 
Bài 2:
Cho tam giác ABC đường thẳng // với BC và đi qua trung điểm của AB cắt AB ,AC tại D, E vẽ dường thẳng a qua A //BC a cắt các đường BE, CD lần lượt tại G,K chứng minh A là trung điểm của KG
Bài 3:
Cho hình bình hành ABCD một điểm M nằm trên đường chéo AC đường thẳng BM cắt DC tại E và cắt AD tại F chứng minh MB2=ME.MF
Bài 4:
Cho tam giác ABC trong nửa mặt phẳng chứa A bờ BC, vẽ tia Cx //AB từ trung điểm E của AB vẽ đường thẳng //với BC cắt AC tại D và cắt Cx tại F đường thẳng BF cắt AC tại I
a, chứng minh : IC2= IA .ID
b, Tính tỷ số 
Bài 5:
Cho hình thang ABCD ( AB //CD ) một đường thẳng song song với hai đáy cắt cạnh bên AD ở I cắt đường chéo BD ở K cắt đường chéo AC ở L và cắt cạnh bên BC ở M
a, Chứng minh : IK=LM
b, Đường thẳng đi qua giao điểm O của hai đường chéo và song song với hai đáy cắt cạnh bên ở E, F. Chứng minh OE = OF
Bài 6:
Cho tam giác ABC trên đường phân giác AM lấy I, K thuộc đường phân giác AM sao cho AI = IK = KM qua I và K vẽ các đường DE và PQ // BC ( D và P thuộc AB, E và Q thuộc AC)
a, Chứng minh : 
b, Cho BC = 36cm. Tính : DE và PQ ?
Bài 7:
Cho tam giác ABC lấy M, N thuộc hai cạnh AB, AC nối B với N; C với M qua M kẻ đường thẳng song song BN cắt AC tại I qua N kẻ đường song song CM cắt AB tại K.
Chứng minh : IK song song BC.
Bài 8:
Cho tam giác ABC qua một điểm O tùy ý nằm bên trong tam giác dựng các đường thẳng AO, BO và CO cắt BC, CA, AB tương ứng tại M, N, K.
Chứng minh rằng : 
Bài 9:
Cho tam giác ABC lấy D thuộc BC; M là nằm giữa A và D gọi I, L lần lượt là trung điểm của MB và MC. Đường thẳng DI cắt AB tại E. Đường thẳng DL cắt AC tại F Chứng minh: EF // IL.
Bài 10:
Cho hình chữ nhật ABCD. M và N là trung điểm của AD và BC. Trên tia đối của tia DC lấy một điểm P bất kỳ, gọi Q là giao điểm của PM với đường chéo AC.
Chứng minh rằng: MN là tia phân giác của góc QNP.
Bài 11:
Cho tam giác ABC ba góc đều nhọn ba đường cao A A”, B B”, C C” đồng qui tại H
Chứng minh rằng : 
Chứng minh : SABC = và SBHC =
Chứng minh tương tự ta có := (1)  (2)


 (3) Cộng (1) (2) (3) ta có 


Bài 13:
Cho tam giác ABC trung tuyến AM. Một đường thẳng bất kì cắt AB, AC, AM tại P, Q, I.
Chứng minh I là trung điểm của PQ.
Bài 14:
Cho hình thang ABCD (AB//CD). O là giao điểm hai đường chéo. Một đường thẳng qua O cắt AD và BC tại M và N. minh OM=ON.
Bài 15:
Cho tam giác ABC có AC > AB, AC = 45. Hình chiếu của AC và BC trên BC theo thứ tự dài 27cm và 15cm. Đường trung trực của BC cắt AC tại N. Tính CN.
Bài 16:
Cho tam giác ABC vuông tại A. Vẽ ra ngoài tam giác đó các tam giác ABD cân tại B, ACF cân tại C. Gọi H là giao điểm của AB và CD, K là giao của AC và BF. Chứng minh:
a/ AH = AK
b/AH2 = BH.CK
Bài 17:
Một đường thẳng qua đỉnh A của hình bình hành ABCD cắt BD, BC, DC theo thứ tự tại E, K và G .Chứng minh rằng:
a/ AE2=EK.EG b/ 
Bài 18:
Cho tứ giác lồi ABCD. Đường thẳng qua A song song với BC cắt BD ở E. Đường thẳng qua B song song với AD cắt AC ở G.
 
Gửi ý kiến