Violet
Dethi

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

BÀI TẬP XÁC XUẤT LỚP 11 CÓ ĐÁP ÁN

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Lê Văn Giao
Ngày gửi: 09h:33' 13-11-2013
Dung lượng: 999.5 KB
Số lượt tải: 7721
Số lượt thích: 4 người (Huyen Tran, Kim Linh, Nguyễn Thanh Tuấn, ...)

TRUNG TÂM

LÊ VĂN GIAO - ĐẠI HỌC KHOA HỌC
TOÁN, LÝ, HÓA, SINH 10, 11, 12 – 01679766950

Bài toán 1.
Cho một lục giác đều ABCDEF. Viết các chữ cái A, B, C, D, E, F vào 6 thẻ. Lấy ngẫu nhiên hai thẻ. Tìm xác suất sao cho đoạn thẳng mà các đầu mút là các điểm được ghi trên 2 thẻ đó là:
Cạnh của lục giác.
Đường chéo của lục giác.
Đường chéo nối 2 đỉnh đối diện của lục giác.
(Bài 8 – trang 77 sách Đại số và giải tích 11

+ Vì lấy 2 điểm nên:  -> 
+ Gọi:
A là biến cố “2 thẻ lấy ra là 2 cạnh của lục giác”
B là biến cố “2 thẻ lấy ra là đường chéo của lục giác”
C là biến cố “2 thẻ lấy ra là đường chéo của 2 cạnh đối diện của lục giác”





Bài toán 2.
Xếp ngẫu nhiên ba bạn nam và ba bạn nữ ngồi vào sáu ghế kê theo hàng ngang. Tìm xác suất sao cho.
Nam nữ ngồi xen kẽ nhau.
Ba bạn nam ngồi cạnh nhau.
(Bài 6 – trang 76 sách Đại số và giải tích 11)
+ Cách xếp 3 bạn nam và 3 bạn nữ vào 6 ghế kê theo hàng ngang  cách.
+Cách xếp 3 bạn nam và 3 bạn nữ vào 6 ghế kê theo hàng ngang, biết rằng nam nữ ngồi xen kẽ nhau  cách.
+Cách xếp 3 bạn nam và 3 bạn nữ vào02 6 ghế kê theo hàng ngang, biết rằng ba bạn nam ngồi cạnh nhau 4. cách.
+ Gọi  là biến cố “Xếp 3 học sinh nam và 3 học sinh nữ vào 6 ghế kê theo hàng ngang mà nam và nữ xen kẽ nhau”
+ Gọi  là biến cố “Xếp 3 học sinh nam và 3 học sinh nữ vào 6 ghế kê theo hàng ngang mà 3 bạn nam ngồi cạnh nhau”
+ Ta có 
+ Suy ra



Bài toán 3.
Gieo một con súc xắc, cân đối và đồng nhất. Giả sử con súc xắc suất hiện mặt b chấm. Xét phương trình 
Tính xác suất sao cho phương trình có nghiệm.
( Bài 4 trang 74 sách Đại số và giải tích 11)

+ Ký hiệu “con súc xắc suất hiện mặt b chấm” là b:
+ Không gian mẫu:
+ Gọi A là biến cố: “Phương trình có nghiệm”
+ Ta đã biết phương trình có nghiệm khi 
+ Do đó 

Bài toán 4.
Trên một cái vòng hình tròn dùng để quay sổ số có gắn 36 con số từ 01 đến 36. Xác suất để bánh xe sau khi quay dừng ở mỗi số đều như nhau. Tính xác suất để khi quay hai lần liên tiếp bánh xe dừng lại ở giữa số 1 và số 6 ( kể cả 1 và 6) trong lần quay đầu và dừng lại ở giữa số 13 và 36 ( kể cả 13 và 36) trong lần quay thứ 2.
Phân tích: Rõ ràng là trong bài toán này ta không thể sử dụng phương pháp liệt kê vì số phần tử của biến cố là tương đối lớn. Ở đây ta sẽ biểu diễn tập hợp dưới dạng tính chất đặc trưng để tính toán.
Gọi A là biến cố cần tính xác suất


Có 6 cách chọn i, ứng với mỗi cách chọn i có 25 cách chọn j ( từ13 đến36 có 25 số) do đó theo quy tắc nhân

Bài toán 5
Gieo một đồng tiền cân đối đồng chất liên tiếp cho đến khi lần đầu tiên xuất hiện mặt ngửa hoặc cả 6 lần xuất hiện mặt sấp thì dừng lại.
Mô tả không gian mẫu.
Tính xác suất:
A: “Số lần gieo không vượt quá ba”
B: “Số lần gieo là năm”
C: “Số lần gieo là sáu”

hông gian mẫu 
Ta có:



Bài toán 6
Gieo đồng tiền xu cân đối đồng chất 3 lần. Tính xác suất của các biến cố:
Biến cố A: “Trong 3 lần gieo có ít nhất một lần xuất hiện mặt ngửa”.
Biến cố B: “Trong 3 lần gieo có cả hai mặt sấp, ngửa”.
+ Không gian mẫu 
+ Ta có biến cố đối của biến cố A là biến cố:
: “Không cố lần nào xuất hiện mặt ngửa”
Và ta có 
+ Tương tự ta có:

Bài toán 7.
Gieo ngẫu nhiên một con súc sắc cân đối đồng chất hai lần. Tính xác suất của các biến cố sau:
Biến cố A: “Trong hai lần gieo ít nhất một lần xuất
No_avatar

tinh gium mjnh o me ga . chon 1so tu nhien 4 chu so

 
Gửi ý kiến