Violet
Dethi

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

BO de thi vao 10

Nhấn vào đây để tải về
Hiển thị toàn màn hình
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn: sưu tầm
Người gửi: Sao Venus
Ngày gửi: 10h:17' 29-04-2008
Dung lượng: 301.5 KB
Số lượt tải: 188
Số lượt thích: 0 người
Đề thi vào 10 hệ THPT chuyên 1999 Đại học khoa học tự nhiên.
Cho các số a, b, c thỏa mãn điều kiện:  .Hãy tính giá trị biểu thức .
a) Giải phương trình  b) Giải hệ phương trình : 
Tìm tất cả các số nguyên dương n sao cho n2 + 9n – 2 chia hết cho n + 11.
Cho vòng tròn (C) và điểm I nằm trong vòng tròn. Dựng qua I hai dây cung bất kỳ MIN, EIF. Gọi M’, N’, E’, F’ là các trung điểm của IM, IN, IE, IF. a) Chứng minh rằng : tứ giác M’E’N’F’ là tứ giác nội tiếp. b) Giả sử I thay đổi, các dây cung MIN, EIF thay đổi. Chứng minh rằng vòng tròn ngoại tiếp tứ giác M’E’N’F’ có bán kính không đổi. c) Giả sử I cố định, các day cung MIN, EIF thay đổi nhưng luôn vuông góc với nhau. Tìm vị trí của các dây cung MIN, EIF sao cho tứ giác M’E’N’F’ có diện tích lớn nhất.
Các số dương x, y thay đổi thỏa mãn điều kiện: x + y = 1. Tìm giá trị nhỏ nhất của biểu thức : 
Đề thi vào 10 hệ THPT chuyên toán 1992 Đại học tổng hợp
a) Giải phương trình (1 + x)4 = 2(1 + x4). b) Giải hệ phương trình 
a) Phân tích đa thức x5 – 5x – 4 thành tích của một đa thức bậc hai và một đa thức bậc ba với hệ số nguyên. b) áp dụng kết quả trên để rút gọn biểu thức .
Cho ( ABC đều. Chứng minh rằng với mọi điểm M ta luôn có MA ≤ MB + MC.
Cho ( xOy cố định. Hai điểm A, B khác O lần lượt chạy trên Ox và Oy tương ứng sao cho OA.OB = 3.OA – 2.OB. Chứng minh rằng đường thẳng AB luôn đI qua một điểm cố định.
Cho hai số nguyên dương m, n thỏa mãn m > n và m không chia hết cho n. Biết rằng số dư khi chia m cho n bằng số dư khi chia m + n cho m – n. Hãy tính tỷ số .
Đề thi vào 10 hệ THPT chuyên 1996 Đại học khoa học tự nhiên.
Cho x > 0 hãy tìm giá trị nhỏ nhất của biểu thức .
Giải hệ phương trình 
Chứng minh rằng với mọi n nguyên dương ta có : n3 + 5n  6.
Cho a, b, c > 0. Chứng minh rằng : .
Cho hình vuông ABCD cạnh bằng a. Gọi M, N, P, Q là các điểm bất kỳ lần lượt nằm trên các cạnh AB, BC, CD, DA. a) Chứng minh rằng 2a2 ≤ MN2 + NP2 +PQ2 + QM2 ≤ 4a2 . b) Giả sử M là một điểm cố định trên cạnh AB. Hãy xác định vị trí các điểm N, P, Q lần lượt trên các cạnh BC, CD, DA sao cho MNPQ là một hình vuông.
Đề thi vào 10 hệ THPT chuyên 2000 Đại học khoa học tự nhiên
a) Tính . b) GiảI hệ phương trình : 
a) Giải phương trình  b) Tìm tất cả các giá trị của a để phương trình  có ít nhất một nghiệm nguyên.
Cho đường tròn tâm O nội tiếp trong hình thang ABCD (AB // CD), tiếp xúc với cạnh AB tại E và với cạnh CD tại F như hình a) Chứng minh rằng . b) Cho AB = a, CB = b (a < b), BE = 2AE. Tính diện tích hình thang ABCD.
Cho x, y là hai số thực bất kì khác không. Chứng minh rằng . Dấu đẳng thức xảy ra khi nào ?
Đề thi vào 10 hệ THPT chuyên 1998 Đại học khoa học tự nhiên
a) GiảI phương trình . b) GiảI hệ phương trình : 
Các số a, b thỏa mãn điều kiện :  Hãy tính giá trị biểu thức P = a2 + b2 .
Cho các số a, b, c ( [0,1]. Chứng minh rằng {Mờ}
Cho đường tròn (O) bán kính R và hai điểm A, B cố định trên (O) sao cho AB < 2R. Giả sử M là điểm thay đổi trên cung lớn  của đường tròn . a) Kẻ từ B đường tròn vuông góc với AM, đường thẳng này cắt AM tại I và (O) tại N. Gọi J là trung điểm của MN. Chứng minh rằng khi M thay đổi trên đường tròn thì mỗi điểm I, J đều nằm trên một đường tròn cố định. b) Xác định vị trí của M để chu vi ( AMB là lớn nhất.
a) Tìm các số nguyên dương n sao cho mỗi số n + 26 và n – 11 đều là lập phương của một số nguyên dương. b) Cho các số x, y, z thay đổi thảo mãn điều kiện x2 + y2 +z2 = 1. Hãy tìm giá trị lớn nhất của biểu thức .
Đề thi vào 10 hệ THPT chuyên 1993-1994 Đại học tổng hợp
a) GiảI phương trình . b) GiảI hệ phương trình : 
Tìm max và min của biểu thức : A = x2y(4 – x – y) khi x và y thay đổi thỏa mãn điều kiện : x ( 0, y ( 0, x + y ≤ 6.
Cho hình thoi ABCD. Gọi R, r lần lượt là các bán kính các đường tròn ngoại tiếp các tam giác ABD, ABC và a là độ dài cạnh hình thoi. Chứng minh rằng .
Tìm tất cả các số nguyên dương a, b, c đôI một khác nhau sao cho biểu thức  nhận giá trị nguyên dương.
Đề thi vào 10 hệ THPT chuyên 1991-1992 Đại học tổng hợp
a) Rút gọn biểu thức . b) Phân tích biêu thức P = (x – y)5 + (y-z)5 +(z - x )5 thành nhân tử.
a) Cho các số a, b, c, x, y, z thảo mãn các điều kiện  hãy tính giá trị của biểu thức A = xa2 + yb2 + zc2. b) Cho 4 số a, b, c, d mỗi số đều không âm và nhỏ hơn hoặc bằng 1. Chứng minh rằng 0 ≤ a + b + c + d – ab – bc – cd – da ≤ 2. Khi nào đẳng thức xảy ra dấu bằng.
Cho trước a, d là các số nguyên dương. Xét các số có dạng : a, a + d, a + 2d, … , a + nd, … Chứng minh rằng trong các số đó có ít nhất một số mà 4 chữ số đầu tiên của nó là 1991.
Trong một cuộc hội thảo khoa học có 100 người tham gia. Giả sử mỗi người đều quen biết với ít nhất 67 người. Chứng minh rằng có thể tìm được một nhóm 4 người mà bất kì 2 người trong nhóm đó đều quen biết nhau.
Cho hình vuông ABCD. Lấy điểm M nằm trong hình vuông sao cho ( MAB = ( MBA = 150 . Chứng minh rằng ( MCD đều.
Hãy xây dựng một tập hợp gồm 8 điểm có tính chất : Đường trung trực của đoạn thẳng nối hai điểm bất kì luôn đI qua ít nhất hai điểm của tập hợp đó.
Đề thi vào 10 hệ THPT chuyên Lý 1989-1990
Tìm tất cả các giá trị nguyên của x để biêu thức  nguyên.
Tìm giá trị nhỏ nhất của biểu thức P = a2 + ab + b2 – 3a – 3b + 3.
a) Chứng minh rằng với mọi số nguyên dương m thì biểu thức m2 + m + 1 không phảI là số chính phương. b) Chứng minh rằng với mọi số nguyên dương m thì m(m + 1) không thể bằng tích của 4 số nguyên liên tiếp.
Cho ( ABC vuông cân tại A. CM là trung tuyến. Từ A vẽ đường vuông góc với MC cắt BC tại H. Tính tỉ số .
Có 6 thành phố, trong đó cứ 3 thành phố bất kì thì có ít nhất 2 thnàh phố liên lạc được với nhau. Chứng minh rằng trong 6 thành phố nói trên tồn tại 3 thành phố liên lạc được với nhau.
Đề thi vào 10 hệ THPT chuyên năm 2004 Đại học khoa học tự nhiên(vòng1)
a) GiảI phương trình  b) Tìm nghiệm nguyên cảu hệ 
Cho các số thực dương a và b thỏa mãn a100 + b100 = a101 + b101 = a102 + b102 .Hãy tính giá trị biểu thức P = a2004 + b2004 .
Cho ( ABC có AB=3cm, BC=4cm, CA=5cm. Đường cao, đường phân giác, đường trung tuyến của tam giác kẻ từ đỉnh B chia tam giác thành 4 phần. Hãy tính diện tích mỗi phần.
Cho tứ giác ABCD nội tiếp trong đường tròn, có hai đường chéo AC, BD vuông góc với nhau tại H (H không trùng với tâm cảu đường tròn ). Gọi M và N lần lượt là chân các đường vuông góc hạ từ H xuống các đường thẳng AB và BC; P và Q lần lượt là các giao điểm của các đường thẳng MH và NH với các đường thẳng CD và DA. Chứng minh rằng đường thẳng PQ song song với đường thẳng AC và bốn điểm M, N, P, Q nằm trên cùng một đường tròn .
Tìm giá trị nhỏ nhất của biểu thức 
Đề thi vào 10 hệ THPT chuyên năm 2004 Đại học khoa học tự nhiên(vòng 2)
giảI phương trình 
GiảI hệ phương trình 
Tìm giá trị nhỏ nhất của biểu thức  với x, y là các số thực lớn hơn 1.
Cho hình vuông ABCD và điểm M nằm trong hình vuông. a) Tìm tất cả các vị trí của M sao cho ( MAB = ( MBC = ( MCD = ( MDA. b) Xét điểm M nằm trên đường chéo AC. Gọi N là chân đường vuông góc hạ từ M xuống AB và O là trung điểm của đoạn AM. Chứng minh rằng tỉ số  có giá trị không đổi khi M di chuyển trên đường chéo AC. c) Với giả thiết M nằm trên đường chéo AC, xét các đường tròn (S) và (S’) có các đường kính tương ứng AM và CN. Hai tiếp tuyến chung của (S) và (S’) tiếp xúc với (S’) tại P và Q. Chứng minh rằng đường thẳng PQ tiếp xúc với (S).
Với số thực a, ta định nghĩa phần nguyên của số a là số nguyên lớn nhất không vượt quá a và kí hiệu là [a]. Dãy số x0, x1, x2 …, xn, … được xác định bởi công thức . Hỏi trong 200 số {x1, x2, …, x199} có bao nhiêu số khác 0 ?

Đề thi thử vào THPT Chu Văn An 2004
Cho biểu thức  a) Rút gọn P b) Cho . Hãy tính giá trị của P.
Cho phương trình mx2 – 2x – 4m – 1 = 0 (1) a) Tìm m để phương trình (1) nhận x =  là nghiệm, hãy tìm nghiệm còn lại. b) Với m ( 0 Chứng minh rằng phương trình (1) luôn có hai nghiệm x1, x2 phân biệt. Gọi A, B lần lượt là các điểm biểu diễn của các nghiệm x1, x2 trên trục số. Chứng minh rằng độ dài đoạn thẳng AB không đổi (Không chắc lắm)
Cho đường tròn (O;R) đường kính AB và một điểm M di động trên đường tròn (M khác A, B) Gọi CD lần lượt là điểm chính giữa cung nhỏ AM và BM. a) Chứng minh rằng CD = R và đường thẳng CD luôn tiếp xúc với một đường tròn cố định. b) Gọi P là hình chiếu vuông góc của điểm D lên đường thẳng AM. đường thẳng OD cắt dây BM tại Q và cắt đường tròn (O) tại giao điểm thứ hai S. Tứ giác APQS là hình gì ? Tại sao ? c) đường thẳng đI qua A và vuông góc với đường thẳng MC cắt đường thẳng OC tại H. Gọi E là trung điểm của AM. Chứng minh rằng HC = 2OE. d) Giả sử bán kính đường tròn nội tiếp ( MAB bằng 1. Gọi MK là đường cao hạ từ M đến AB. Chứng minh rằng : 
Đề thi vào 10 hệ THPT chuyên năm 2003 Đại học khoa học tự nhiên(vòng 2)
Cho phương trình x4 + 2mx2 + 4 = 0. Tìm giá trị của tham số m để phương trình có 4 nghiệm phân biệt x1, x2, x3, x4 thỏa mãn x14 + x24 + x34 + x44 = 32.
Giải hệ phương tri
 
Gửi ý kiến