Violet
Dethi

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

Các chuyên đề bồi dưỡng học sinh giỏi hình 7 có lời giải

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Bùi Thị Ngà
Ngày gửi: 08h:42' 29-10-2017
Dung lượng: 8.1 MB
Số lượt tải: 4147
Số lượt thích: 4 người (Van Phap, Trần Văn Trà, Đinh Hữu Hiều, ...)
CÁC CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI
HÌNH HỌC LỚP 7

CHUYÊN ĐỀ 1: GÓC TRONG TAM GIÁC

Cơ sở lí thuyết
Để giải tốt các bài toán tính số đo góc thì học sinh tối thiểu phải nắm vững các kiến thức sau:
Trong tam giác:
Tổng số đô ba góc trong tam giác bằng
Biết hai góc ta xác địn được góc còn lại.
Mỗi góc ngoài của một tam giác bằng tổng của hai góc trong không kề với nó.
Trong tam giác cân: biết một góc ta xác định được hai góc còn lại.
Trong tam giác vuông:
Biết một góc nhọn, xác định được góc còn lại.
Cạnh góc vuông bằng nửa cạnh huyền thì góc đối diện với cạnh góc vuông có số đo bằng
Trong tam giác vuông cân: mỗi góc nhọn có số đo bằng
Trong tam giác đều: mỗi góc có số đo bằng
Đường phân giác của một góc chia góc đó ra hai góc có số đo bằng nhau.
Hai đường phân giác của hai góc kề bù tạo thành một góc có số đo là
Hai đường phân giác của hai góc kề phụ tạo thành một góc có số đo là
Hai góc đối đỉnh thì bằng nhau.
Tính chất về góc so le trong, so le ngoài, đồng vị, hai góc trong cung phía, …
Khi giải bài toán về tính số đo góc cần chú ý:
Vẽ hình chính xác, đúng với các số liệu trong đề bài để có hường chứng minh đúng.
Phát hiện các tam giác đều, “nửa tam giác đều”, tam giác vuông cân, tam giác cân trong hình vẽ.
Chú ý liên hệ giữa các góc của tam giác, liên hệ giữa các cạnh và các góc trong tam giác, phát hiện các cặp tam giác bằng nhau. Vẽ đường phụ hợp lí làm xuất hiệ các góc đặc biệt, những cặp góc bằng nhau. Trong các đường phụ vẽ thêm, có thể vẽ đường phân giác, đường vuông góc, tam giác đều, …
Có thể dùng chữ để diễn đạt mối quan hệ giữa các góc.
Xét đủ các trường hợp về số đo góc có thể xảy ra (ví dụ góc nhọn, góc tù, …)
(Tham khảo toán nâng cao lớp 7, tập 2 – Vũ Hữu Bình)
Trong thực tế, để giải bài toán tính số đo góc ta thường xét các góc đó nằm trong mối liên hệ với các góc ở các hình đặc biệt đã nêu ở trên hoặc xét các góc tương ứng bằng nhau ... rồi suy ra kết quả.
Tuy nhiên, đứng trước một bài toán không phải lúc nào cũng gặp thuận lợi, có thể đưa về các trường hợp trên ngay mà có nhiều bài đòi hỏi người đọc phải tạo ra được những "điểm sáng bất ngờ" có thể là một đường kẻ phụ, một hình vẽ phụ… từ mối quan hệ giữa giả thiết, kết luận và những kiến thức, kỹ năng đã học trước đó mới giải quyết được. Chúng ta có thể xem “đường kẻ phụ”, “hình vẽ phụ” như là “chìa khoá “ thực thụ để giải quyết dạng toán này.
Một số dạng toán và hướng giải quyết
Dạng 1. Tính số đo góc qua việc phát hiện tam giác đều.
Bài toán 1. Cho có có lấy sao cho Tính số đo
Nhận xét
Ta cần tìm thuộc có mà
Ta thấy có sự liên hệ rõ nét giữa góc và góc mặt khác
Từ đây, ta thấy các yếu tố xuất hiệ ở trên liên quan đến tam giác đều.
Điều này giúp ta nghĩ đến việc dựng hình phụ là tam giác đều.
Hướng giải
Cách 1. (Hình 1)
Vẽ đều (D, A cùng phía so với BC). Nối A với D.
Ta có (c.c.c) =>
Lại có (c.g.c) =>
=>

Cách 2. (Hình 2)
Vẽ đều (M, D khác phía so với AC).
Ta có (c.g.c) => (1)
=> cân tại D, => (2)
Từ (1) và (2) suy ra


Từ hướng giải quyết trên chúng ta thử giải Bài toán1 theo các phương án sau:
Vẽ đều (C, D khác phía so với AB)
Vẽ đều (B, D khác phía so với AC)
Vẽ đều (D, C khác phia so với AB)
…………………………..
Lập luận tương tự ta cũng có kết quả.
Bài toán 2. Cho cân tại A, Đường cao AH, các điểm E, F theo thứ tự thuộc các đoạn thẳng AH, AC sao cho Tính
Hướng giải
Vẽ đều (B, D khác phía so với AC)
 
Gửi ý kiến