Violet
Dethi

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

Chuyen de gioi han ham so rat hay

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn: Suu tam
Người gửi: Nguyễn Minh
Ngày gửi: 22h:58' 21-09-2016
Dung lượng: 583.5 KB
Số lượt tải: 181
Số lượt thích: 0 người
CHƯƠNG IV: GIỚI HẠN
CHỦ ĐỀ: GIỚI HẠN CỦA DÃY SỐ
KIẾN THỨC CƠ BẢN
Định nghĩa:
Định nghĩa 1: Ta nói rằng dãy số (un) có giới hạn là 0 khi n dần tới vô cực, nếu  có thể nhỏ hơn một số dương bé tùy ý, kể từ số hạng nào đó trở đi. Kí hiệu:
Định nghĩa 2:Ta nói dãy số (un) có giới hạn là a hay (un) dần tới a khi n dần tới vô cực (), nếu Kí hiệu: 
Chú ý: .
Một vài giới hạn đặc biệt.

với .
Lim(un)=c (c là hằng số) => Lim(un)=limc=c.
Một số định lý về giới hạn của dãy số.
Định lý 1: Cho dãy số (un),(vn) và (wn) có :  và .
Định lý 2: Nếu lim(un)=a , lim(vn)=b thì:




Tổng của cấp số nhân lùi vô hạn có công bội q ,với 

Dãy số dần tới vô cực:
Ta nói dãy số (un) dần tới vô cực  khi n dần tới vơ cực  nếu un lớn hơn một số dương bất kỳ, kể từ số hạng nào đó trở đi. Kí hiệu: lim(un)= hay un  khi .
Ta nói dãy số (un) có giới hạn là  khi  nếu lim.Ký hiệu: lim(un)= hay un khi .
Định lý:
Nếu :  thì 
Nếu :  thì 
PHƯƠNG PHÁP GIẢI TOÁN.
Giới hạn của dãy số (un) với  với P,Q là các đa thức:
Nếu bậc P = bậc Q = k, hệ số cao nhất của P là a0, hệ số cao nhất của Q là b0 thì chia tử số và mẫu số cho nk để đi đến kết quả : .
Nếu bậc P nhỏ hơn bậc Q = k, thì chia tử và mẫu cho nk để đi đến kết quả :lim(un)=0.
Nếu k = bậc P > bậc Q, chia tử và mẫu cho nk để đi đến kết quả :lim(un)=.
Giới hạn của dãy số dạng:  , f và g là các biển thức chứa căn.
Chia tử và mẫu cho nk với k chọn thích hợp.
Nhân tử và mẫu với biểu thức liên hợp.
CÁC VÍ DỤ.



 là biểu thức liên hợp của 

Tổng của cấp số nhân lùi vô hạn có công bội  và số hạng đầu u1=1.
.



BÀI TẬP
Tìm các giới hạn:








 Tìm các giới hạn sau:

 Tìm các giới hạn sau:










 Tìm tổng các cấp số nhân lùi vô hạn sau:





GIỚI HẠN CỦA HÀM SỐ
KIẾN THỨC CƠ BẢN
Định nghĩa:Cho hàm số f(x) xác định trên khoảng K.Ta nói rằng hàm số f(x) có giới hạn là L khi x dần tới a nếu với mọi dãy số (xn), xn K và xn a , mà lim(xn)=a đều có lim[f(xn)]=L.Kí hiệu:.
Một số định lý về giới hạn của hàm số:
Định lý 1:Nếu hàm số có giới hạn bằng L thì giới hạn đó là duy nhất.
Định lý 2:Nếu các giới hạn: thì:




Cho ba hàm số f(x), h(x) và g(x) xác định trên khoảng K chứa điểm a (có thể trừ điểm a), g(x)f(x)h(x)  và .
Mở rộng khái niệm giới hạn hàm số:
Trong định nghĩa giới hạn hàm số , nếu với mọi dãy số (xn), lim(xn) = a , đều có lim[f(xn)]= thì ta nói f(x) dần tới vô cực khi x dần tới a, kí hiệu: .
Nếu với mọi dãy số (xn) , lim(xn) =  đều có lim[f(xn)] = L , thì ta nói f(x) có giới hạn là L khi x dần tới vô cực, kí hiệu:.
Trong định nghĩa giới hạn hàm số chỉ đòi hỏi với mọi dãy số (xn), mà xn > a , thì ta nói f(x) có giới hạn về bên phải tại a, kí hiệu :. Nếu chỉ đòi hỏi với
 
Gửi ý kiến

Hãy thử nhiều lựa chọn khác