Violet
Dethi

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

Đề cương ôn thi

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Đặng Đình Phương
Ngày gửi: 22h:25' 08-03-2020
Dung lượng: 711.0 KB
Số lượt tải: 88
Số lượt thích: 0 người
Bài 2. Cho phương trình:  (1) (x là ẩn số)
Tìm điều kiện của m để phương trình (1) có hai nghiệm phân biệt.
Định m để hai nghiệm x1,x2 của phương trình (1) thỏa mãn:



 = (2m – 1)2 – 4(m2 – 1) = 5 – 4m
Phương trình có hai nghiệm phân biệt 
Phương trình có nghiệm 
Áp dụng hệ thức Vi-ét, ta có: 
Theo đề bài:

Ta có hệ phương trình: 

Kết hợp với điều kiện  là giá trị cần tìm.

Bài 2. Cho phương trình:  (m là tham số).
a) Giải phương trình với .
b) Tìm m để phương trình có hai nghiệm phân biệt  thỏa mãn điều kiện :
.


 (1)
Với m = 0, phương trình (1) trở thành: 

Vậy với m = 2 thì nghiệm của phương trình (1) là .

Phương trình (1) có hai nghiệm phân biệt 
Áp dụng hệ thức Vi-ét, ta có: 
Do đó:

Kết hợp với điều kiện  là các giá trị cần tìm.


Bài 2. Cho phương trình: x2 – 5x + m = 0 (m là tham số).
a) Giải phương trình trên khi m = 6.
b) Tìm m để phương trình trên có hai nghiệm x1, x2 thỏa mãn: .


a) Với m = 6, ta có phương trình: x2 – 5x + 6 = 0
∆ = 25 – 4.6 = 1 . Suy ra phương trình có hai nghiệm: x1 = 3; x2 = 2.
b) Ta có: ∆ = 25 – 4.m
Để phương trình đã cho có nghiệm thì ∆ 0  (*)
Theo hệ thức Vi-ét, ta có x1 + x2 = 5 (1); x1x2 = m (2).
Mặt khác theo bài ra thì  (3). Từ (1) và (3) suy ra x1 = 4; x2 = 1 hoặc x1 = 1; x2 = 4 (4)
Từ (2) và (4) suy ra: m = 4. Thử lại thì thoả mãn.

Bài 2. Cho phương trình ẩn x: x2 – 2mx + 4 = 0 (1)
a) Giải phương trình đã cho khi m = 3.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: ( x1 + 1 )2 + ( x2 + 1 )2 = 2.


Câu 3: a) Với m = 3 ta có phương trình: x2 – 6x + 4 = 0.
Giải ra ta được hai nghiệm: x1 = .
b) Ta có: ∆/ = m2 – 4
Phương trình (1) có nghiệm (*).
Theo hệ thức Vi-ét ta có: x1 + x2 = 2m và x1x2 = 4. Suy ra: ( x1 + 1 )2 + ( x2 + 1 )2 = 2
x12 + 2x1 + x22 + 2x2 = 0(x1 + x2)2 – 2x1x2 + 2(x1 + x2) = 0 4m2 – 8 + 4m = 0
m2 + m – 2 = 0 .
Đối chiếu với điều kiện (*) ta thấy chỉ có nghiệm m2 = - 2 thỏa mãn. Vậy m = - 2 là giá trị cần tìm.


Bài 2. Cho phương trình ẩn x: x2 – 2mx - 1 = 0 (1)
a) Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2.
b) Tìm các giá trị của m để: x12 + x22 – x1x2 = 7.


Câu 3: a) Ta có ∆/ = m2 + 1 > 0, (m ( R. Do đó phương trình (1) luôn có hai nghiệm phân biệt.
b) Theo định lí Vi-ét thì: x1 + x2 = 2m và x1.x2 = - 1.
Ta có: x12 + x22 – x1x2 = 7(x1 + x2)2 – 3x1.x2 = 7
4m2 + 3 = 7m2 = 1 m = ± 1.



Bài 2. Cho phương trình ẩn x: x2 – x + 1 + m = 0 (1)
a) Giải phương trình đã cho với m = 0.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: x1x2.( x1x2 – 2 ) = 3( x1 + x2 ).


Câu 3: a) Với m = 0 ta có phương trình x2 – x + 1 = 0
 
Gửi ý kiến