Violet
Dethi

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

Đề cương ôn thi

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Lê Thương Huyền
Ngày gửi: 23h:14' 02-03-2021
Dung lượng: 223.5 KB
Số lượt tải: 261
Số lượt thích: 0 người
CHỦ ĐỀ 11: GIẢI HỆ HAI PHƯƠNG TRÌNH
I/ Giải hệ phương trình bằng phương pháp thế.
+ Từ một phương trình rút ẩn này theo ẩn kia, rồi thế vào phương trình còn lại ta được phương trình một ẩn.
+ Chú ý: Có những trường hợp, từ một phương trình ta biểu diễn cả một biểu thức theo ẩn kia rồi thế vào phương trình còn lại.
Bài 1: Giải hệ phương trình: 
Từ phương trình (1) ta biểu diễn x theo y (gọi là rút x) ta có: 
Thay  vào phương trình (2) ta được: 
Thế phương trình vào phương trình hai của hệ ta có: 
Giải hệ: 
Vậy hệ phương trình có một nghiệm (x = 1; y = 0).
Bài 2/ Giải hệ phương trình bằng phương pháp thế.
(  (  ( 
(  (  ( 
(  (  (
Bài 3: Giải hệ phương trình sau: 
Gợi ý: Từ (2) rút ra |x – 1| = 3 – 3y.
Rồi thay vào (1) được phương trình ẩn y chứa giá trị tuyệt đối.
Bài 4: Giải hệ phương trình sau: 
Gợi ý: Từ (2) rút ra |y – 1| = - 1 – x.
Rồi thay vào (1) được phương trình ẩn x chứa giá trị tuyệt đối.
Bài 5: Giải hệ phương trình sau: 
Gợi ý: Thay biểu thức (2) vào phương trình (1) ta có:
.
Từ đó ta tìm được x. Việc tìm giá trị của y cũng không có gì khó khan nữa.
Bài 6: Giải hệ phương trình sau: 
Gợi ý: x5 + y5 = (x3 + y3)(x2 + y2) – x2y2(x + y)
Thay (1) vào (2) ta được x2y2(x + y) = 0. Từ đó tìm được x, y
Bài 7: Giải hệ phương trình sau: 
Gợi ý: x3 + y3 = (x + y)(x2 + y2) – xy(x + y)
Thế (1) vào (2) ta được xy(x + y) = 0. Từ đó tìm được x, y
b) Định a, b biết phương trình ax2 - 2bx + 3 = 0 có hai nghiệm là x = 1 và x = -2
Bài 8: Xác định a, b để đa thức f(x) = 2ax2 + bx – 3 chia hết cho 4x – 1 và x + 3
Hướng dẫn
f(x) = 2ax2 + bx – 3 chia hết cho 4x – 1 và x + 3 nên.
Biết nếu f(x) chia hết cho ax + b thì f(-) = 0
 Giải hệ phương trình ta được a = 2; b = 11
Bài 9: Cho biểu thức f(x) = ax2 + bx + 4. Xác định các hệ số a và b biết rằng f(2) = 6 , f(-1) = 0
Hướng dẫn
 

II. Giải hệ phương trình bằng phương pháp cộng đại số.
Phương pháp cộng đại số giúp tạo ra một phương trình mới chỉ chứa một ẩn hoặc phương trình mới đơn giản hơn để thấy được sự liên hệ đơn giản giữa các ẩn.
+ Bước 1: Cộng hay trừ từng vế hai phương trình của hệ của hệ phương trình đã cho để được một phương trình mới.
+ Bước 2: Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ (và giữ nguyên phương trình kia)
Lưu ý:
- Khi các hệ số của cùng một ẩn đối nhau thì ta cộng vế theo vế của hệ.
- Khi các hệ số của cùng một ẩn bằng nhau thì ta trừ vế theo vế của hệ.
- Khi hệ số của cùng một ẩn không bằng nhau cũng không đối nhau thì ta chọn nhân với số thích hợp để đưa về hệ số của cùng một ẩn đối nhau (hoặc bằng nhau).
Bài 1: Giải hệ pt: 
Nhận thấy: các hệ số của ẩn y là đối nhau => Cộng vế theo vế hai phương trình của hệ được phương trình mới chỉ chứa ẩn x
Hệ ( 
Bài 2: Giải hệ pt: 
Nhận thấy: các hệ số của ẩn x là bằng nhau => Trừ vế theo vế hai phương trình của hệ được phương trình mới chỉ chứa ẩn y
Hệ ( 
Bài 3: Giải hệ pt: .
Nhận thấy: các hệ số của ẩn x cũng như các hệ số của ẩn y là không bằng nhau
Cách 1: (Cân bằng hệ số của ẩn x) Nhân
 
Gửi ý kiến