Tìm kiếm Đề thi, Kiểm tra
đề & đa toan khoi d 2011

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Anh Duy
Ngày gửi: 13h:08' 12-07-2011
Dung lượng: 288.5 KB
Số lượt tải: 185
Nguồn:
Người gửi: Nguyễn Anh Duy
Ngày gửi: 13h:08' 12-07-2011
Dung lượng: 288.5 KB
Số lượt tải: 185
Số lượt thích:
0 người
BỘ GIÁO DỤC VÀ ĐÀO TẠO
--------------------------------
ĐỀ CHÍNH THỨC
ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011
Môn thi: TOÁN; Khối D
Thời gian làm bài : 180 phút, không kể thời gian phát đề
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I (2,0 điểm) Cho hàm số
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
2. Tìm k để đường thẳng y = kx + 2k +1 cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho khoảng cách từ A và B đến trục hoành bằng nhau.
Câu II (2,0 điểm)
1. Giải phương trình
2. Giải phương trình
Câu III (1,0 điểm) Tính tích phân
Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BA = 3a, BC = 4a; mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Biết SB = và = 300 . Tính thể tích khối chóp S.ABC và khoảng cách từ điểm B đến mặt phẳng (SAC) theo a.
Câu V (1,0 điểm) Tìm m để hệ phương trình sau có nghiệm
PHẦN RIÊNG (3,0 điểm) : Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
Câu VI.a (2,0 điểm)
1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh B(-4; 1), trọng tâm G(1; 1) và đường thẳng chứa phân giác trong của góc A có phương trình x ( y ( 1 = 0. Tìm tọa độ các đỉnh A và C.
2. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; 3) và đường thẳng . Viết phương trình đường thẳng ( đi qua điểm A, vuông góc với đường thẳng d và cắt trục Ox.
Câu VII.a (1,0 điểm) Tìm số phức z, biết :
B. Theo chương trình Nâng cao
Câu VI.b (2,0 điểm)
1. Trong mặt phẳng tỏa độ Oxy, cho điểm A(1; 0) và đường tròn (C) : x2 + y2 ( 2x + 4y ( 5 = 0. Viết phương trình đường thẳng ( cắt (C) tại điểm M và N sao cho tam giác AMN vuông cân tại A.
2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ( : và mặt phẳng
(P) : 2x ( y + 2z = 0. Viết phương trình mặt cầu có tâm thuộc đường thẳng (, bán kính bằng 1 và tiếp xúc với mặt phẳng (P).
Câu VII.b (1,0 điểm) Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số trên đoạn [0;2].
------Hết------
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh:……………………………. …….Số báo danh: ………………..
BÀI GIẢI GỢI Ý
Câu I :
1. Khảo sát và vẽ đồ thị (C)
D = R {-1}
y/ = > 0 với mọi x ( D
và ( x = -1 là TCĐ
( y = 2 là TCN
BBT :
x - ( - 1 +(
y/ + + y +( 2
2 -(
Hàm số đồng biến trên từng khoảng xác định, không có cực trị.
Đồ thị hàm số :
2. Pt hoành độ giao điểm :
( kx2 + (3k - 1)x + 2k = 0 (x = -1 không là nghiệm)
Ycbt : ( k ( 0 và ( = k2 - 6k + 1 > 0 ( k < và k ( 0 (*)
Khoảng cách từ A và B đến Ox bằng nhau
( (yA(=(yB( ( (
( k = – 3 (thỏa đk (*) ). Vậy YCBT ( k = – 3
Câu II :
1) đk : tg; cosx ( 0
Pt ( sin2x + 2cosx ( sinx ( 1 = 0 ( 2sinxcosx + 2cosx ( (sinx + 1) = 0
( 2cosx (sinx + 1) ( (sinx + 1)= 0 ( (2cosx ( 1)(sinx + 1) = 0
so đk ta có nghiệm của pt :
2) (x
--------------------------------
ĐỀ CHÍNH THỨC
ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011
Môn thi: TOÁN; Khối D
Thời gian làm bài : 180 phút, không kể thời gian phát đề
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I (2,0 điểm) Cho hàm số
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
2. Tìm k để đường thẳng y = kx + 2k +1 cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho khoảng cách từ A và B đến trục hoành bằng nhau.
Câu II (2,0 điểm)
1. Giải phương trình
2. Giải phương trình
Câu III (1,0 điểm) Tính tích phân
Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BA = 3a, BC = 4a; mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Biết SB = và = 300 . Tính thể tích khối chóp S.ABC và khoảng cách từ điểm B đến mặt phẳng (SAC) theo a.
Câu V (1,0 điểm) Tìm m để hệ phương trình sau có nghiệm
PHẦN RIÊNG (3,0 điểm) : Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
Câu VI.a (2,0 điểm)
1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh B(-4; 1), trọng tâm G(1; 1) và đường thẳng chứa phân giác trong của góc A có phương trình x ( y ( 1 = 0. Tìm tọa độ các đỉnh A và C.
2. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; 3) và đường thẳng . Viết phương trình đường thẳng ( đi qua điểm A, vuông góc với đường thẳng d và cắt trục Ox.
Câu VII.a (1,0 điểm) Tìm số phức z, biết :
B. Theo chương trình Nâng cao
Câu VI.b (2,0 điểm)
1. Trong mặt phẳng tỏa độ Oxy, cho điểm A(1; 0) và đường tròn (C) : x2 + y2 ( 2x + 4y ( 5 = 0. Viết phương trình đường thẳng ( cắt (C) tại điểm M và N sao cho tam giác AMN vuông cân tại A.
2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ( : và mặt phẳng
(P) : 2x ( y + 2z = 0. Viết phương trình mặt cầu có tâm thuộc đường thẳng (, bán kính bằng 1 và tiếp xúc với mặt phẳng (P).
Câu VII.b (1,0 điểm) Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số trên đoạn [0;2].
------Hết------
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh:……………………………. …….Số báo danh: ………………..
BÀI GIẢI GỢI Ý
Câu I :
1. Khảo sát và vẽ đồ thị (C)
D = R {-1}
y/ = > 0 với mọi x ( D
và ( x = -1 là TCĐ
( y = 2 là TCN
BBT :
x - ( - 1 +(
y/ + + y +( 2
2 -(
Hàm số đồng biến trên từng khoảng xác định, không có cực trị.
Đồ thị hàm số :
2. Pt hoành độ giao điểm :
( kx2 + (3k - 1)x + 2k = 0 (x = -1 không là nghiệm)
Ycbt : ( k ( 0 và ( = k2 - 6k + 1 > 0 ( k < và k ( 0 (*)
Khoảng cách từ A và B đến Ox bằng nhau
( (yA(=(yB( ( (
( k = – 3 (thỏa đk (*) ). Vậy YCBT ( k = – 3
Câu II :
1) đk : tg; cosx ( 0
Pt ( sin2x + 2cosx ( sinx ( 1 = 0 ( 2sinxcosx + 2cosx ( (sinx + 1) = 0
( 2cosx (sinx + 1) ( (sinx + 1)= 0 ( (2cosx ( 1)(sinx + 1) = 0
so đk ta có nghiệm của pt :
2) (x
 
Các ý kiến mới nhất