Tìm kiếm Đề thi, Kiểm tra
Đề thi chính thức vào 10 môn Toán- Đề số 3 (có lời giải chi tiết trọn bộ 110 đề)

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Hào Xu
Ngày gửi: 12h:28' 15-03-2020
Dung lượng: 192.5 KB
Số lượt tải: 141
Nguồn:
Người gửi: Hào Xu
Ngày gửi: 12h:28' 15-03-2020
Dung lượng: 192.5 KB
Số lượt tải: 141
Số lượt thích:
1 người
(Phạm Văn Thắng)
SỞ GIÁO DỤC VÀ ĐÀO TẠO BẮC GIANG
___________________
ĐỀ CHÍNH THỨC
ĐỀ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2015-2016
MÔN THI: TOÁN
( Thời gian làm bài 120 phút, không kể thời gian giao đề)
Câu I. (2.0 điểm)
1. Tính giá trị của biểu thức
2. Biết đồ thị của hàm số , (a ≠ 0) đi qua điểm M(3; -6) hãy xác định giá trị của a.
Câu II. (3.0 điểm)
1. Giải hệ phương trình
2. Rút gọn biểu thức (với x ≥ 0; x ≠ 4).
3. Cho phương trình x2 – (m2 + 3)x + 2m2 + 2 = 0 (x là ẩn, m là tham số) (1).
a. Giải phương trình (1) với m = -
b. Tìm m để phương trình (1) có hai nghiệm phân biệt lớn hơn 1.
Câu III. (1,5 điểm) Nhà bạn Dũng được ông bà nội cho một mảnh đất hình chữ nhật. Khi bạn Nam đến nhà bạn Dũng chơi, Dũng đố Nam tìm ra kích thước của mảnh đất khi biết: mảnh đất có chiều dài gấp 4 lần chiều rộng và nếu giảm chiều rộng đi 2m, tăng chiều dài lên gấp đôi thì diễn tích mảnh đất đó sẽ tăng thêm 20 m2. Các em hãy giúp bạn Nam tìm ra chiều dài và chiều rộng của mảnh đất nhà bạn Dũng đó.
Câu IV. (3.0 điểm) Trên đường tròn (O) có đường kính AB = 2R, lấy một điểm C sao cho AC = R và lấy điểm D bất kỳ trên cung nhỏ BC (điểm D không trùng với B và C). Gọi E là giao điểm của AD và BC. Đường thẳng đi qua điểm E và vuông góc với đường thẳng AB tại điểm H cắt tia AC tại điểm F. Điểm M là trung điểm của đoạn EF.
1. Chứng minh tứ giác BHCF là tứ giác nội tiếp.
2. Chứng minh: HA.HB = HE. HF
3. Chứng minh CM là tiếp tuyến của đường tròn (O).
4. Xác định vị trí của điểm D để chu vi của tứ giác ABDC lớn nhất.
Câu V. (0,5 điểm) Cho ba số thực dương x, y, z thỏa mãn xy + xz + yz = 2016
Chứng minh rằng
HƯỚNG DẪN CHẤM BÀI THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG TỈNH BẮC GIANG MÔN THI: TOÁN
Câu I.
1.
2. Đồ thị hàm số , (a ≠ 0) đi qua điểm M(3; -6) khi – 6 =
Vậy a = -2 là giá trị cần tìm.
Câu II.
1.
Vậy hệ phương trình có nghiệm (x; y) = (2;1)
2. Ta có:
Vậy B = 4, với x ≥ 0; x ≠ 4.
3. a. Với m = ta được phương trình x2 – 6x + 8 = 0
Tính được ∆’ = 1
Kết luận được phương trình (1) có hai nghiệm x1 = 2; x2 = 4.
b. Khẳng định được phương trình (1) có hai nghiệm phân biệt :
x1 = 2; x2 = m2 + 1 khi m ≠ 1 và m ≠ -1
Để phương trình (1) có hai nghiệm phân biệt đều lớn hơn 1 thì m2 + 1 > 1 ( m ≠ 0.
Kết luận: Với m ≠ -1; m ≠ 0 và m ≠ 1 thỏa mãn yêu cầu đầu bài.
Câu III.
Gọi chiều rộng của mảnh đất là x (m) (điều kiện: x > 2)
Khi đó chiều dài của mảnh đất là: 4x (m)
Diện tích mảnh đất nhà bạn Dũng là: 4x2 (m2)
Diện tích mảnh đất sau khi giảm chiều rộng 2m và tăng chiều dài lên gấp đôi là:
8x.(x – 2) (m2)
Theo bài ra ta có phương trình: 8x.(x – 2) – 4x2 = 20 Giải phương trình ta được x = 5 và x = -1.
Đối chiếu với điều kiện ta được x = 5.
Vậy chiều rộng mảnh đất là 5m và chiều dài mảnh đất là 20m.
Câu IV.
1. Ta có: (giả thiết) (1).
(góc nội tiếp chắn nửa đường tròn (O)).
Suy ra (2)
Từ (1) và (2) suy ra tứ giác BHCF nội tiếp một đường tròn (vì có hai đỉnh H, C kề nhau cùng nhìn BF dưới một góc vuông
___________________
ĐỀ CHÍNH THỨC
ĐỀ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2015-2016
MÔN THI: TOÁN
( Thời gian làm bài 120 phút, không kể thời gian giao đề)
Câu I. (2.0 điểm)
1. Tính giá trị của biểu thức
2. Biết đồ thị của hàm số , (a ≠ 0) đi qua điểm M(3; -6) hãy xác định giá trị của a.
Câu II. (3.0 điểm)
1. Giải hệ phương trình
2. Rút gọn biểu thức (với x ≥ 0; x ≠ 4).
3. Cho phương trình x2 – (m2 + 3)x + 2m2 + 2 = 0 (x là ẩn, m là tham số) (1).
a. Giải phương trình (1) với m = -
b. Tìm m để phương trình (1) có hai nghiệm phân biệt lớn hơn 1.
Câu III. (1,5 điểm) Nhà bạn Dũng được ông bà nội cho một mảnh đất hình chữ nhật. Khi bạn Nam đến nhà bạn Dũng chơi, Dũng đố Nam tìm ra kích thước của mảnh đất khi biết: mảnh đất có chiều dài gấp 4 lần chiều rộng và nếu giảm chiều rộng đi 2m, tăng chiều dài lên gấp đôi thì diễn tích mảnh đất đó sẽ tăng thêm 20 m2. Các em hãy giúp bạn Nam tìm ra chiều dài và chiều rộng của mảnh đất nhà bạn Dũng đó.
Câu IV. (3.0 điểm) Trên đường tròn (O) có đường kính AB = 2R, lấy một điểm C sao cho AC = R và lấy điểm D bất kỳ trên cung nhỏ BC (điểm D không trùng với B và C). Gọi E là giao điểm của AD và BC. Đường thẳng đi qua điểm E và vuông góc với đường thẳng AB tại điểm H cắt tia AC tại điểm F. Điểm M là trung điểm của đoạn EF.
1. Chứng minh tứ giác BHCF là tứ giác nội tiếp.
2. Chứng minh: HA.HB = HE. HF
3. Chứng minh CM là tiếp tuyến của đường tròn (O).
4. Xác định vị trí của điểm D để chu vi của tứ giác ABDC lớn nhất.
Câu V. (0,5 điểm) Cho ba số thực dương x, y, z thỏa mãn xy + xz + yz = 2016
Chứng minh rằng
HƯỚNG DẪN CHẤM BÀI THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG TỈNH BẮC GIANG MÔN THI: TOÁN
Câu I.
1.
2. Đồ thị hàm số , (a ≠ 0) đi qua điểm M(3; -6) khi – 6 =
Vậy a = -2 là giá trị cần tìm.
Câu II.
1.
Vậy hệ phương trình có nghiệm (x; y) = (2;1)
2. Ta có:
Vậy B = 4, với x ≥ 0; x ≠ 4.
3. a. Với m = ta được phương trình x2 – 6x + 8 = 0
Tính được ∆’ = 1
Kết luận được phương trình (1) có hai nghiệm x1 = 2; x2 = 4.
b. Khẳng định được phương trình (1) có hai nghiệm phân biệt :
x1 = 2; x2 = m2 + 1 khi m ≠ 1 và m ≠ -1
Để phương trình (1) có hai nghiệm phân biệt đều lớn hơn 1 thì m2 + 1 > 1 ( m ≠ 0.
Kết luận: Với m ≠ -1; m ≠ 0 và m ≠ 1 thỏa mãn yêu cầu đầu bài.
Câu III.
Gọi chiều rộng của mảnh đất là x (m) (điều kiện: x > 2)
Khi đó chiều dài của mảnh đất là: 4x (m)
Diện tích mảnh đất nhà bạn Dũng là: 4x2 (m2)
Diện tích mảnh đất sau khi giảm chiều rộng 2m và tăng chiều dài lên gấp đôi là:
8x.(x – 2) (m2)
Theo bài ra ta có phương trình: 8x.(x – 2) – 4x2 = 20 Giải phương trình ta được x = 5 và x = -1.
Đối chiếu với điều kiện ta được x = 5.
Vậy chiều rộng mảnh đất là 5m và chiều dài mảnh đất là 20m.
Câu IV.
1. Ta có: (giả thiết) (1).
(góc nội tiếp chắn nửa đường tròn (O)).
Suy ra (2)
Từ (1) và (2) suy ra tứ giác BHCF nội tiếp một đường tròn (vì có hai đỉnh H, C kề nhau cùng nhìn BF dưới một góc vuông
 
Các ý kiến mới nhất