Tìm kiếm Đề thi, Kiểm tra

Quảng cáo

Hướng dẫn sử dụng thư viện

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 036 286 0000
  • contact@bachkim.vn

de thi hsg Toan 6 +dap an

Nhấn vào đây để tải về
Hiển thị toàn màn hình
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn: oiuiuojkjojn
Người gửi: Hồ Văn Hiếu
Ngày gửi: 12h:49' 20-04-2012
Dung lượng: 152.5 KB
Số lượt tải: 1467
Số lượt thích: 0 người
PHÒNG GIÁO DỤC & ĐÀO TẠO
nông cống
ĐỀ THI HỌC SINH GIỎI CẤP HUYỆN
NĂM HỌC 2011 - 2012
Môn : Toán 6 (Thời gian 150 phút)


Bài 1 : (5 điểm) Thực hiện các phép tính sau một cách hợp lý :
a) .
b) 
c) 
d) 1152 - (374 + 1152) + (-65 + 374)
e) 13 - 12 + 11 + 10 - 9 + 8 - 7 - 6 + 5 - 4 + 3 + 2 - 1
Bài 2 : (4 điểm) Tìm x, biết:
a) 
b) 
c) 11 - (-53 + x) = 97
d) -(x + 84) + 213 = -16
Bài 3 : (2 điểm) Tìm hai số tự nhiên a và b, biết: BCNN(a,b)=300; ƯCLN(a,b)=15 và a+15=b.
Bài 4 : (3 điểm)
a) Tìm số nguyên x và y, biết : xy - x + 2y = 3.
b) So sánh M và N biết rằng : .
.
Bài 5 : (6 điểm) Cho đoạn thẳng AB, điểm O thuộc tia đối của tia AB. Gọi M, N thứ tự là trung điểm của OA, OB.
Chứng tỏ rằng OA < OB.
Trong ba điểm O, M, N điểm nào nằm giữa hai điểm còn lại ?
Chứng tỏ rằng độ dài đoạn thẳng MN không phụ thuộc vào vị trí của điểm O (O thuộc tia đối của tia AB).














B - PHẦN ĐÁP ÁN :

Bài 1 : (5 điểm) Thực hiện các phép tính sau một cách hợp lý :
Đáp án
Điểm


1


1


1

d) 1152 - (374 + 1152) + (-65 + 374) = 1152 - 374 - 1152 + (-65) + 374
= (1152 - 1152) + (-65) + (374 - 374) = -65
1

e) 13 - 12 + 11 + 10 - 9 + 8 - 7 - 6 + 5 - 4 + 3 + 2 - 1 =
= 13 - (12 - 11 - 10 + 9) + (8 - 7 - 6 + 5) - (4 - 3 - 2 + 1) = 13
1

Bài 2 : (4 điểm) Tìm x :
Câu
Đáp án
Điểm

a.
 

1

b.
 

1

c.
 11 - (-53 + x) = 97

1

d.
 -(x + 84) + 213 = -16

1


Bài 3 : (3 điểm)
Đáp án
Điểm

Từ dữ liệu đề bài cho, ta có :
+ Vì ƯCLN(a, b) = 15, nên ắt tồn tại các số tự nhiên m và n khác 0, sao cho:
a = 15m; b = 15n (1)
và ƯCLN(m, n) = 1 (2)
+ Vì BCNN(a, b) = 300, nên theo trên, ta suy ra :

+ Vì a + 15 = b, nên theo trên, ta suy ra :
 
Trong các trường hợp thoả mãn các điều kiện (2) và (3), thì chỉ có trường hợp : m = 4, n = 5 là thoả mãn điều kiện (4).
Vậy với m = 4, n = 5, ta được các số phải tìm là : a = 15 . 4 = 60; b = 15 . 5 = 75
3

Bài 4 : (2 điểm)
Câu
Đáp án
Điểm

a.
Chứng minh đẳng thức:
- (-a + b + c) + (b + c - 1) = (b - c + 6) - (7 - a + b) + c.
Biến đổi vế trái của đẳng thức, ta được :
VT = -(-a + b + c) + (b + c - 1)
= -(-a) - (b + c) + (b + c) + (-1) = a - 1
Biến đổi vế phải của đẳng thức, ta được :
VP = (b - c + 6) - (7 - a + b) + c
= b + (-c) + 6 - 7 + a - b + c = [b + (-b)] + [(-c) + c] + a + [6 + (-7)] = a - 1
 
Gửi ý kiến