Violet
Dethi

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Coccoc-300x250

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

Gợi ý cho bài hình của bạn Nhật

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Giang Tien Hai
Ngày gửi: 13h:37' 25-04-2019
Dung lượng: 43.9 KB
Số lượt tải: 34
Số lượt thích: 4 người (Chử Khắc Minh, Hà Minh Nhật, Trần Anh Tú, ...)
Xin nhờ thầy cô và các bạn giải giúp em bài này vớiạ
Đề bài: Cho tam giác ABC nội tiếp (O) có trực tâm H và các đường cao BE,CF. M là trung điểm BC. Gọi P là 1 điểm nằm trên BC sao cho góc MHC = góc PHB. Gọi K là hình chiếu của A lên HP
CMR: 
CMR: (KMP) tiếp xúc (O)
/

/
Vẽ đường kính AG. Chứng minh được BHCG là hình bình hành => H, M, G thẳng hàng. Gọi T là giao của GH với (O) vá Tx là tia tiếp tuyến của (O) kẻ qua T. Dễ thấy A, H, T, K, E, F cùng thuộc một đường tròn. Do góc MHC = BHP => góc EHK = THF => cung KE = TF; cung KEF = TEF => KE = TF và TE = KF.
Từ các cặp tam giác BPH và KEH; CPH và KFH; TBF và TCE; BHF và CHE đồng dạng (g.g.) suy ra: BP/KE = PH/EH; CP/KF = PH/HF; TF/TE = BF/CE; HF/HE = BF/BE => BP/PC = KE/KF.HF/HE = TF/TE.BF/CE = BF/CE.BF/CE = BF2/CE2.
Gọi N là giao của AD với (O). Chứng minh được H, N đối xứng nhau qua BC => góc BNP = BHP = CHM = BGT = BNT => N, P, T thẳng hàng => góc TKP = TKH = TAH = TAN = xTN => Tx là tiếp tuyến của đường tròn (TKP). Lại có góc KPM = DBH + BHP = HAE + EHK = HAE + EAK = HAK = KTM => KTPM nội tiếp => Tx là tiếp tuyến của đường tròn (KMP) => Tx là tiếp tuyến chung của (O) và (KMP) => đpcm.






 
Gửi ý kiến