Violet
Dethi

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

HỌC SINH GIỎI 2021/2022

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Ngọc Thư
Ngày gửi: 20h:52' 28-10-2021
Dung lượng: 134.0 KB
Số lượt tải: 37
Số lượt thích: 0 người
SỞ GIÁO DỤC ĐÀO TẠO KỲ THI HỌC SINH GIỎI
THANH HOÁ NĂM HỌC 2012 - 2013
ĐỀ CHÍNH THỨC Môn thi : TOÁN
(Đề gồm có 1 trang)
Thời gian làm bài :150 phút


Câu 1: (2.0 điểm )
Cho biểu thức :
1/ Rút gọn biểu thức A.
2/ Tìm các giá trị của x để 
Câu 2 (2,0 điểm )
Trong mặt phẳng toạ độ Oxy, cho Parabol (P) : y = ax2 và đường thẳng (d):
y = bx + 1
1/ Tìm các giá trị của a và b để (P) và (d) cùng đi qua điểm M(1; 2)
2/ Với a, b vừa tìm được, chứng minh rằng (P) và (d) còn có một điểm chung N khác M. Tính diện tích tam giác MON (với O là gốc toạ độ)
Câu 3 (2.0 điểm)
1/ Cho phương trình: (m là tham số). Tìm m để
phương trình có hai nghiệm dương phân biệt
2/ Giải hệ phương trình: 
Câu 4 (3.0 điểm) : Cho A là điểm cố định nằm ngoài đường tròn (O). Từ A kẻ tiếp tuyến AP và AQ tới đường tròn (P và Q là các tiếp điểm). Đường thẳng đi qua O và vuông góc với OP cắt đường thẳng OQ tại M.
1/ Chứng minh rằng: MO = MA
2/ Lấy điểm N trên cung lớn PQ của đường tròn (O) sao cho tiếp tuyến với (O) tại N cắt các tia AP, AQ lần lượt tại B và C. Chứng minh rằng:
a)  không phụ thuộc vào vị trí của điểm N.
b) Nếu tứ giác BCQP nội tiếp được trong một đường tròn thì PQ//BC
Câu 5 (1.0 điểm)
Cho x, y là các số thực dương thoả mãn : . Chứng minh rằng :

---------- Hết ----------

Họ tên thí sinh …………………………………………….. Số báo danh: …………………………

Chữ ký giám thị 1: ………………………………… Chữ ký giám thị 2: ……………………
Bài giải
Câu 1: (2.0 điểm )
Cho biểu thức :
1/ Rút gọn biểu thức A.
 (ĐK: x ( 0, x ( 4, x ( 9 )
A = … = 
2/ Tìm các giá trị của x để 

Kết hợp với ĐK ( 
Câu 2 (2,0 điểm )
Trong mặt phẳng toạ độ Oxy, cho Parabol (P) : y = ax2 và đường thẳng (d): y = bx + 1
1/ Tìm các giá trị của a và b để (P) và (d) cùng đi qua điểm M(1; 2)
M ((P) ( … ( a = 2 ( y = 2x2
M ( (d) ( … ( b = 1 ( y = x + 1
2/ Với a, b vừa tìm được, chứng minh rằng (P) và (d) còn có một điểm chung N khác M. Tính diện tích tam giác MON (với O là gốc toạ độ)
Xét pt hoành độ gđ: 2x2 = x + 1 ( 2x2 - x - 1 = 0


Câu 3 (2.0 điểm)
1/ Cho phương trình: (m là tham số). Tìm m để
phương trình có hai nghiệm dương phân biệt?
phương trình có hai nghiệm dương phân biệt
(
2/ Giải hệ phương trình:  (ĐK: x ( 1; y ( 1)
(2) ( x + y = xy (3)
Hai vế của (1) đều dương ta bình phương hai vế ta có:

Thay (3) vào ta có: x + y = 4 kết hợp với (3) có hệ: 
Áp dụng hệ thức Vi Ét ta có x; y là hai nghiệm của pt: X2 - 4x + 4 = 0
( x = 2; y = 2

Câu 4 (3.0 điểm) : Cho A là điểm cố định nằm ngoài đường tròn (O). Từ A kẻ tiếp tuyến AP và AQ tới đường tròn (P và Q là các tiếp điểm). Đường thẳng đi qua O và vuông góc với OP cắt đường thẳng OQ tại M.

1/ Chứng minh rằng: MO = MA
(A1 = (O1 và (A1 = (A2 ( (A2 = (O1 ( (MAO cân ( MO = MA
2/ Lấy điểm N trên cung lớn PQ của đường tròn (O) sao cho tiếp tuyến với (O) tại N cắt các tia AP, AQ lần lượt tại B và C. Chứng minh rằng
 
Gửi ý kiến