Tìm kiếm Đề thi, Kiểm tra
HỌC SINH GIỎI 2021/2022

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Ngọc Thư
Ngày gửi: 20h:55' 28-10-2021
Dung lượng: 281.0 KB
Số lượt tải: 129
Nguồn:
Người gửi: Nguyễn Ngọc Thư
Ngày gửi: 20h:55' 28-10-2021
Dung lượng: 281.0 KB
Số lượt tải: 129
Số lượt thích:
0 người
SỞ GIÁO DỤC VÀ ĐÀO TẠO
HÀ NAM
ĐỀ CHÍNH THỨC
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC: 2013 – 2014
Môn: Toán (Chuyên Toán)
Thời gian làm bài: 150 phút (Không kể thời gian giao đề)
Bài 1. (2,0 điểm)
Cho biểu thức M =
Tìm điều kiện của a và b để M xác định và rút gọn M.
Tính giá trị của M khi a = , b =
Bài 2. (2,0 điểm)
Cho phương trình x3 – 5x2 + (2m + 5)x – 4m + 2 = 0, m là tham số.
Tìm điều kiện của m để phương trình có ba nghiệm phân biệt x1, x2, x3.
Tìm giá trị của m để x12 + x22 + x32 = 11.
Bài 3. (1,0 điểm)
Cho số nguyên dương n và các số A = (A gồm 2n chữ số 4); B = (B gồm n chữ số 8). Chứng minh rằng A + 2B + 4 là số chính phương.
Bài 4. (4,0 điểm)
Cho đường tròn (O), đường thẳng d cắt (O) tại hai điểm C và D. Từ điểm M tuỳ ý trên d kẻ các tiếp tuyếnMA và MB với (O) (A và B là các tiếp điểm). Gọi I là trung điểm của CD.
Chứng minh tứ giác MAIB nội tiếp.
Các đường thẳng MO và AB cắt nhau tại H. Chứng minh H thuộc đường tròn ngoại tiếp COD.
Chứng minh rằng đương thẳng AB luôn đi qua một điểm cố định khi M thay đổi trên đường thẳng d.
Chứng minh
Bài 5. (1,0 điểm)
Cho ba số thực a, b, c > 0 thoả mãn a + b + c = 2013.
Chứng minh .
Dấu đẳng thức sảy ra khi nào?
HẾT
SỞ GIÁO DỤC VÀ ĐÀO TẠO
HÀ NAM
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC: 2013 – 2014
Môn: Toán (Chuyên Toán)
HƯỚNG DẪN CHẤM
(Hướng dẫn này gồm 4 trang)
Câu
Nội dung
Điểm
Câu 1
(2,0 đ)
a) M =
ĐK xác định của M:
0,25
M =
0,25
=
0, 5
b) Ta có M = với a = , b =
0,25
0,25
Vậy
0,25
Từ đó M =
0,25
Câu 2
(2,0 đ)
a) x3 – 5x2 + (2m + 5)x – 4m + 2 = 0 (1)
Nếu trừ 0,25 điểm
0,25
Để (1) có ba nghiệm phân biệt thì pt (*) có hai nghiệm phân biệt khác 2
0,25
Điều kiện là
0,5
b) Ta có ba nghiệm phân biệt của phương trình (1) là x1 = 2; x2; x3 trong đó x2; x3 là hai nghiệm phân biệt của pt (*)
0,25
Khi đó x12 + x22 + x32 = 11
0,25
áp dụng định lý Vi-ét đối với pt (*) ta có (0,25 đ)
Vậy (**) (thoả mãn ĐK)
Vậy m = 1 là giá trị cần tìm.
0,5
Câu 3
(1,0 đ)
Ta có
0,25
=
0,25
=
0,25
Khi đó
=
Ta có điều phảI chứng minh.
0,25
Câu 4
(4,0 đ)
a) MA, MB là các iếp tuyến của (O)
0,25
I là trung điểm của CD
0,25
A, I, B cùng thuộc đường tròn đường kính MO
0,25
Tứ giác MAIB nội tiếp đường tròn đường kính MO.
b) MA = MB (tính chất hai tiếp tuyến cắt nhau)
OA = OB
MO là đường trung trực của AB
MO AB
MH.MO = MB2 (hệ thức lượng trong tam giác vuông) (1)
0,25
sđ
(2)
0,25
Từ (1) và (2) MH.MO = MC.MD
0,25
HÀ NAM
ĐỀ CHÍNH THỨC
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC: 2013 – 2014
Môn: Toán (Chuyên Toán)
Thời gian làm bài: 150 phút (Không kể thời gian giao đề)
Bài 1. (2,0 điểm)
Cho biểu thức M =
Tìm điều kiện của a và b để M xác định và rút gọn M.
Tính giá trị của M khi a = , b =
Bài 2. (2,0 điểm)
Cho phương trình x3 – 5x2 + (2m + 5)x – 4m + 2 = 0, m là tham số.
Tìm điều kiện của m để phương trình có ba nghiệm phân biệt x1, x2, x3.
Tìm giá trị của m để x12 + x22 + x32 = 11.
Bài 3. (1,0 điểm)
Cho số nguyên dương n và các số A = (A gồm 2n chữ số 4); B = (B gồm n chữ số 8). Chứng minh rằng A + 2B + 4 là số chính phương.
Bài 4. (4,0 điểm)
Cho đường tròn (O), đường thẳng d cắt (O) tại hai điểm C và D. Từ điểm M tuỳ ý trên d kẻ các tiếp tuyếnMA và MB với (O) (A và B là các tiếp điểm). Gọi I là trung điểm của CD.
Chứng minh tứ giác MAIB nội tiếp.
Các đường thẳng MO và AB cắt nhau tại H. Chứng minh H thuộc đường tròn ngoại tiếp COD.
Chứng minh rằng đương thẳng AB luôn đi qua một điểm cố định khi M thay đổi trên đường thẳng d.
Chứng minh
Bài 5. (1,0 điểm)
Cho ba số thực a, b, c > 0 thoả mãn a + b + c = 2013.
Chứng minh .
Dấu đẳng thức sảy ra khi nào?
HẾT
SỞ GIÁO DỤC VÀ ĐÀO TẠO
HÀ NAM
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC: 2013 – 2014
Môn: Toán (Chuyên Toán)
HƯỚNG DẪN CHẤM
(Hướng dẫn này gồm 4 trang)
Câu
Nội dung
Điểm
Câu 1
(2,0 đ)
a) M =
ĐK xác định của M:
0,25
M =
0,25
=
0, 5
b) Ta có M = với a = , b =
0,25
0,25
Vậy
0,25
Từ đó M =
0,25
Câu 2
(2,0 đ)
a) x3 – 5x2 + (2m + 5)x – 4m + 2 = 0 (1)
Nếu trừ 0,25 điểm
0,25
Để (1) có ba nghiệm phân biệt thì pt (*) có hai nghiệm phân biệt khác 2
0,25
Điều kiện là
0,5
b) Ta có ba nghiệm phân biệt của phương trình (1) là x1 = 2; x2; x3 trong đó x2; x3 là hai nghiệm phân biệt của pt (*)
0,25
Khi đó x12 + x22 + x32 = 11
0,25
áp dụng định lý Vi-ét đối với pt (*) ta có (0,25 đ)
Vậy (**) (thoả mãn ĐK)
Vậy m = 1 là giá trị cần tìm.
0,5
Câu 3
(1,0 đ)
Ta có
0,25
=
0,25
=
0,25
Khi đó
=
Ta có điều phảI chứng minh.
0,25
Câu 4
(4,0 đ)
a) MA, MB là các iếp tuyến của (O)
0,25
I là trung điểm của CD
0,25
A, I, B cùng thuộc đường tròn đường kính MO
0,25
Tứ giác MAIB nội tiếp đường tròn đường kính MO.
b) MA = MB (tính chất hai tiếp tuyến cắt nhau)
OA = OB
MO là đường trung trực của AB
MO AB
MH.MO = MB2 (hệ thức lượng trong tam giác vuông) (1)
0,25
sđ
(2)
0,25
Từ (1) và (2) MH.MO = MC.MD
0,25
 
Các ý kiến mới nhất