Violet
Dethi

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

HSG Toán 9 - Đà Nẵng 2010

Nhấn vào đây để tải về
Hiển thị toàn màn hình
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Hữu Việt
Ngày gửi: 19h:51' 03-11-2016
Dung lượng: 46.5 KB
Số lượt tải: 32
Số lượt thích: 0 người
SỞ GIÁO DỤC VÀ ĐÀO TẠO
THÀNH PHỐ ĐÀ NẴNG
ĐỀ CHÍNH THỨC
KỲ THI CHỌN HỌC SINH GIỎI LỚP 9
NĂM HỌC 2010 - 2011
Môn thi: TOÁN
Thời gian: 150 phút (không tính thời gian giao đề)


Bài 1. (2,0 điểm) Cho biểu thức:  với a > 0, a ( 1.
a) Chứng minh rằng 
b) Với những giá trị nào của a thì biểu thức  nhận giá trị nguyên?
Bài 2. (2,0 điểm)
a) Cho các hàm số bậc nhất: ,  và  có đồ thị lần lượt là các đường thẳng (d1), (d2) và ((m). Với những giá trị nào của tham số m thì đường thẳng ((m) cắt hai đường thẳng (d1) và (d2) lần lượt tại hai điểm A và B sao cho điểm A có hoành độ âm còn điểm B có hoành độ dương?
b) Trên mặt phẳng tọa độ Oxy, cho M và N là hai điểm phân biệt, di động lần lượt trên trục hoành và trên trục tung sao cho đường thẳng MN luôn đi qua điểm cố định . Tìm hệ thức liên hệ giữa hoành độ của M và tung độ của N; từ đó, suy ra giá trị nhỏ nhất của biểu thức 
Bài 3. (2,0 điểm)
a) Giải hệ phương trình: 
b) Tìm tất cả các giá trị của x, y, z sao cho: 
Bài 4. (3,0 điểm)
Cho đường tròn (C ) với tâm O và đường kính AB cố định. Gọi M là điểm di động trên (C ) sao cho M không trùng với các điểm A và B. Lấy C là điểm đối xứng của O qua A. Đường thẳng vuông góc với AB tại C cắt đường thẳng AM tại N. Đường thẳng BN cắt đường tròn (C ) tại điểm thứ hai là E. Các đường thẳng BM và CN cắt nhau tại F.
a) Chứng minh rằng các điểm A, E, F thẳng hàng.
b) Chứng minh rằng tích AM(AN không đổi.
c) Chứng minh rằng A là trọng tâm của tam giác BNF khi và chỉ khi NF ngắn nhất.
Bài 5. (1,0 điểm) Tìm ba chữ số tận cùng của tích của mười hai số nguyên dương đầu tiên.


------------ Hết ------------

Họ và tên thí sinh: ........................................................ Số báo danh:.......................

 
Gửi ý kiến