Tìm kiếm Đề thi, Kiểm tra
Toán 9

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Lê Thị Hải Châu
Ngày gửi: 20h:30' 09-11-2012
Dung lượng: 184.0 KB
Số lượt tải: 20
Nguồn:
Người gửi: Lê Thị Hải Châu
Ngày gửi: 20h:30' 09-11-2012
Dung lượng: 184.0 KB
Số lượt tải: 20
Số lượt thích:
0 người
SỞ GIÁO DỤC & ĐÀO TẠO NGHỆ AN
KỲ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 9 THCS
NĂM HỌC 2010 - 2011
Môn thi: TOÁN - BẢNG A
Thời gian: 150 phút (không kể thời gian giao đề)
Câu 1 (4,0 điểm).
a) Cho các số nguyên a1, a2, a3, ... , an. Đặt S =
và .
Chứng minh rằng: S chia hết cho 6 khi và chỉ khi P chia hết cho 6.
b) Cho A = (với n > 1). Chứng minh A không phải là số chính phương.
Câu 2 (4,5 điểm).
a) Giải phương trình:
b) Giải hệ phương trình:
Câu 3 (4,5 điểm).
a) Cho x > 0, y > 0, z > 0 và .
Chứng minh rằng:
b) Cho x > 0, y > 0, z > 0 thỏa mãn .
Tìm giá trị lớn nhất của biểu thức:
Câu 4 (4,5 điểm).
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O), H là trực tâm của tam giác. Gọi M là một điểm trên cung BC không chứa điểm A. (M không trùng với B và C). Gọi N và P lần lượt là điểm đối xứng của M qua các đường thẳng AB và AC.
a) Chứng minh ba điểm N, H, P thẳng hàng.
b) Khi , xác định vị trí của điểm M để đạt giá trị nhỏ nhất.
Câu 5 (2,5 điểm).
Cho tam giác ABC nội tiếp đường tròn tâm O, một điểm I chuyển động trên cung BC không chứa điểm A (I không trùng với B và C). Đường thẳng vuông góc với IB tại I cắt đường thẳng AC tại E, đường thẳng vuông góc với IC tại I cắt đường thẳng AB tại F. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định.
- - - Hết - - -
Họ và tên thí sinh:................................................................................ Số báo danh: .....................................
SỞ GIÁO DỤC & ĐÀO TẠO NGHỆ AN
KỲ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 9 THCS
NĂM HỌC 2010 - 2011
Môn thi: TOÁN - BẢNG B
Thời gian: 150 phút (không kể thời gian giao đề)
Câu 1 (5,0 điểm).
a) Chứng minh rằng với mọi số nguyên n thì không chia hết cho 3.
b) Tìm tất cả các số tự nhiên n sao cho là một số chính phương.
Câu 2 (5,0 điểm)
a) Giải phương trình:
b) Giải hệ phương trình:
Câu 3 (3,0 điểm).
Tìm giá trị nhỏ nhất của biểu thức:
Câu 4 (4,5 điểm)
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao BE, CF của tam giác ABC cắt nhau tại H.
a) Chứng minh rằng BH.BE + CH.CF =
b) Gọi K là điểm đối xứng với H qua BC. Chứng minh rằng K(O).
Câu 5 (2,5 điểm).
Cho tam giác ABC nội tiếp đường tròn tâm O, một điểm I chuyển động trên cung BC không chứa điểm A (I không trùng với B và C). Đường thẳng vuông góc với IB tại I cắt đường thẳng AC tại E, đường thẳng vuông góc với IC tại I cắt đường thẳng AB tại F. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định.
- - - Hết - - -
Họ và tên thí sinh:................................................................................ Số báo danh: .....................................
 








Các ý kiến mới nhất