Violet
Dethi

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 091 912 4899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

Đề cương ôn thi

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Đào Thanh Huyền
Ngày gửi: 14h:30' 27-08-2021
Dung lượng: 452.5 KB
Số lượt tải: 16
Số lượt thích: 0 người




CHUYÊN ĐỀ.NGUYÊN LÝ BẤT BIẾN TRONG GIẢI TOÁN
KIẾN THỨC CẦN NHỚ

1. Nguyên lý bất biến.
Cho a, b, c là những số thực ta xét tổng . Nếu ta đổi chỗ a cho b, b cho c, c cho a, thì tổng S luôn luôn chỉ là một (không đổi). Tổng này không thay đổi đối với thứ tự phép cộng. Dù a, b, c có thay đổi thứ tự như thế nào chăng nữa S vẫn không thay đổi, nghĩa là S bất biến đối với việc thay đổi các biến khác. Trong thực tế cũng như trong toán học, rất nhiều vấn đề liên quan đến một số đối tượng nghiên cứu lại bất biến đối với sự thay đổi của nhiều đối tượng khác.
2. Các bước áp dụng nguyên lý bất biến khi giải toán
Để giải toán được bằng đại lượng bất biến ta thực hiện theo các bước sau:
+ Bước 1: Ta phải phát hiện ra những đại lượng bất biến trong bài toán. Bước này tương đối khó nếu ta không luyện tập thường xuyên.
+ Bước 2: Xử lý tiếp đại lượng bất biến để tìm ra các điểm mâu thuẫn.
B. BÀI TẬP VẬN DỤNG
Bài toán 1. Trên bảng ta viết 10 dấu cộng và 15 dấu trừ tại các vị trí bất kỳ. Ta thực hiện xóa 2 dấu bất kỳ trong đó và viết vào đó 1 dấu cộng nếu xóa 2 dấu giống nhau và 1 dấu trừ nếu xóa 2 dấu khác nhau. Hỏi trên bảng còn lại dấu gì nếu ta thực hiện thao tác trên 24 lần?


Hướng dẫn giải
Ta thay mỗi dấu cộng là số 1 và mỗi dấu trừ là -1. Ta thấy tích của các số trên bảng là -1. Mà theo cách thực hiện của bài thì ta xóa đi 2 số và viết vào đó tích của 2 số đó, đồng thời ta chỉ thực hiện 24 lần nên suy ra tích của tất cả các số trên bảng sẽ không đổi như vậy tích các số trên bảng luôn bằng -1. Do đó, khi thực hiện thao tác 24 lần thì trên bảng còn lại dấu - .
Bài toán 2. Giả sử n là 1 số lẻ ta viết lên bảng các số từ 1 đến 2n, sau đó chọn ra 2 số bất kỳ a và b và viết lại 1 số bằng . Chứng minh rằng số cuối cùng còn lại trên bảng là 1 số lẻ.

Hướng dẫn giải
Tổng của các số trên bảng ban đầu là: S = 1 + 2 +….+ 2n = n(2n + 1). Ta thấy n lẻ nên S lẻ. Mà với các thao tác trong bài thì tổng sẽ giảm đi 2.min do đó tính chãn lẻ của tổng không đổi. Vì ban đầu S là số lẻ nên số cuối cùng còn lại trên bảng là số lẻ.
Bài toán 3. Cho các số 2,8,1,0,1,9,9,5 được viết trên 1 vòng tròn. Cứ 2 số cạnh nhau ta cộng thêm 1 vào 2 số đó. Hỏi sau 1 số lần thực hiện thao tác trên các số trên vòng tròn có thể đều bằng nhau được không?



Hướng dẫn giải
Ta nhận thấy tổng các số trong vòng tròn là 1 số lẻ nên khi thực hiện các thao tác trên thì tổng tăng lên 2 nên tính chẵn lẻ của tổng không đổi. Mặt khác số các số trên vòng tròn là chẵn nên nếu các số đều bằng nhau thì tổng của nó bây giờ là số lẻ suy ra mâu thuẫn.
Bài toán 4. Một tờ giấy bị cắt nhỏ thành 6 mảnh hoặc 11 mảnh. Các mảnh nhận được lại có thể chọn để cắt (thành 6 mảnh hoặc 11 mảnh nhỏ hơn) ... Cứ như vậy ta có thể nhận được 2005 mảnh cắt không ?


Hướng dẫn giải
Sau mỗi lần cắt một mảnh giấy thành 6 mảnh hoặc 11 mảnh thì số mảnh giấy tăng lên là 5 hoặc 10. Như vậy tính bất biến của bài toán là “số mảnh giấy luôn tăng lên một bội số của 5”. Vậy số mảnh giấy sau các lần cắt có dạng 1 + 5k, mặt khác 2005 có dạng 5k nên với cách cắt như trên, từ một tờ giấy ban đầu, ta không thể cắt được thành 2005 mảnh.
Bài toán 5. Mỗi số trong dãy 21, 22, 23, ..., 22005
đều được thay thế bởi tổng các chữ số của nó. Tiếp tục làm như vậy với các số nhận được cho tới khi tất cả các số đều có 1 chữ số. Chứng minh trong dãy này : số các số 2 nhiều hơn số các số 1.


Hướng dẫn giải
Ta thấy : “Số tự nhiên A và tổng các chữ số của A luôn cùng số dư trong phép chia cho 9”.
Mặt khác ta có : 21 chia cho 9 dư 2 ;
22 chia cho 9 dư 4 ; 23 chia cho 9 dư 8 ;
24 chia cho 9 dư 7 ; 25
 
Gửi ý kiến