Violet
Dethi

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 091 912 4899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

100 bài hình học nâng cao lớp 9

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Khánh Ninh
Ngày gửi: 21h:16' 06-04-2013
Dung lượng: 190.0 KB
Số lượt tải: 647
Số lượt thích: 0 người
Bài tập hình học 9 nâng cao
Bài 1 : Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R) .Vẽ 2 đường cao BD và CE của tam giác ABC cắt nhau tại H ,DE cắt (O) lần lượt tại P và Q ( P thuộc cung nhỏ AB).
1/Chứng tỏ: Tứ giác BEDC nội tiếp được ,xác định tâm của nó
2/Chứng tỏ : BH.DH=HE.HC
3/Chứng tỏ : tam giác APQ cân tại A và AP2=AE.AB
4/Gọi S1 là diện tích tam giác APQ ,S2 là diện tích tam giác ABC
Gỉa sử S1/ S2 = PQ/2BC .Tính BC theo R

Bài 2 : Cho tam giác ABC có 3 góc nhọn (ABvà CE của tam giác ABC cắt nhau tại H .Vẽ đường kính AI của (O)
1/Chứng tỏ : tứ giác AEHD nội tiếp được
2/Chứng tỏ : AH.AC =AE.AI
3/DE cắt (O) tại S ( S thuộc cung nhỏ AC) ,SI cắt BC tại K .Chứng tỏ : AK vuông góc với HS
4/ HS cắt BC tại L . Chứng tỏ :Đường tròn ngoại tiếp tam giác tam giác LBD , AK,HS đồng quy tại 1 điểm

Bài 3 : Từ 1 điểm A ngòai (O:R) ,kẻ tiếp tuyến AB đến (O) với B là tiếp điểm .Vẽ BH
vuông góc với OA tại H
1/Chứng tỏ :BH2= OH.AH
2/ BH cắt (O) tại C .Chứng tỏ : AC là tiếp tuyến của (O) và tứ giác ABOC nội tiếp
3/Trên BH lấy 1 điểm M bất kỳ .Đường thẳng qua M vuông góc với OM cắt AC và AB lần lượt tại P và Q .Chứng tỏ : tam giác OPQ là tam giác cân
4/Lấy N thuộc CH sao cho PN//OA .Chứng tỏ : CN=HM
5/Gia sử MH=MB và OA =2R .Tính QN theo R

Bài 4 : Từ 1 điểm A ngoài (O:R) , kẻ 2 tiếp tuyến (B,C là tiếp điểm ) ,OA cắt BC tại H .Đường thẳng qua B vuông góc với OC cắt OA tại E .Gọi K là điểm đối xứng H qua B .Đường thẳng qua B song song với AD cắt AK tại M .Chứng minh :
1/Tứ giác ABOC nội tiếp được
2/BD//OA và BD=2OH
3/H là trung điểm của AE
4/BM là tia phân giác của góc KME
5/Gỉa sử BOC =120* .Tính ME theo R

Bài 5 : Cho tam giác ABC có 3 góc nhọn nội tiếp (O:R) có AB1/Chứng tỏ : Tứ giác BHCF là hình bình hành
2/Chứng tỏ : Tứ giác AEHD nội tiếp được
3/ Kẻ BN vuông góc với CF tại N và CM vuông góc với BF tại M .Chứng tỏ : ED=MN
4/Gọi I là trung điểm của DE .So sánh IB và IC
5/Vẽ dây cung CQ//AI .Từ M kẻ đường thẳng song song với AI cắt AC tại K .Chứng tỏ MKN = QAC

Bài 6 : Cho đường tròn tâm O ,đường kính AB ,Trên đường tròn lấy 1 điểm C sao cho BC>AC . Tiếp tuyến tại A của (O) cắt BC tại D .Vẽ AH vuông góc với OD tại H .Từ O kẻ đường thẳng song song với AH cắt (O) tại K ( C và K nằm ở 2 mặt phẳng bờ AB khác nhau ) ,DK cắt (O) tại M .Đường thẳng qua M vuông góc với CH cắt AD tại E ,F là điểm đối xứng E qua M .Chứng minh :
1/Tứ giác AHCD nội tiếp ,xác định tâm
2/CHB = 2BDA
3/DM vuông góc với HM
4/Tam giác DHFcân tại F

Bài 7 : Cho đường tròn tâm O ,đường kính AB . Trên đường tròn lấy 1 điểm C sao cho BC>AC .Gọi D là điểm đối xứng C qua A .Tiếp tuyến tại A của (O) cắt BC và BD lần lượt tại P và Q. Vẽ QM vuông góc với BP tại M , QM cắt AB tại N
1/Chứng tỏ : Các tứ giác QAMB , PANM nội tiếp
2/PN cắt (O) lần lượt tại H và K ( H thuộc cung nhỏ AC ) .Chứng tỏ : AP2=PH.PK
3/QH cắt (O) tại G .Chứng tỏ : 3 đường thẳng BG,AK,QM đồng quy tại 1 điểm
 
Gửi ý kiến