Tìm kiếm Đề thi, Kiểm tra
De thi HSG Toan 8

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Văn Huyên
Ngày gửi: 10h:28' 09-11-2008
Dung lượng: 29.0 KB
Số lượt tải: 750
Nguồn:
Người gửi: Nguyễn Văn Huyên
Ngày gửi: 10h:28' 09-11-2008
Dung lượng: 29.0 KB
Số lượt tải: 750
Số lượt thích:
0 người
phòng GD- đt
huyện thường tín
đề thi chọn học sinh giỏi
năm học 2007- 2008
Môn Toán lớp 8
Thời gian làm bài 150 phút
Câu 1: ( 5 điểm)
Cho biểu thức:
Rút gọn P.
Có giá trị nào của a, b để P = 0?
Tính giá trị của P biết a, b thỏa mãn điều kiện:
3a2 + 3b2 = 10ab và a > b > 0
Câu 2: ( 3,5 điểm)
Chứng minh rằng:
(n2 + n -1)2 – 1 chia hết cho 24 với mọi số nguyên n.
Tìm nghiệm nguyên của phương trình:
x2 = y( y +1)(y + 2)(y + 3)
Câu 3: ( 4 điểm) Giải phương trình:
c, x4 + x2 + 6x – 8 = 0
d,
Câu 4: (7,5 điểm)
Cho tam giác ABC, O là giao điểm của các đường trung trực trong tam giác, H là trực tâm của tam giác. Gọi P, R, M theo thứ tự là trung điểm các cạnh AB, AC, BC. Gọi Q là trung điểm đoạn thẳng AH.
Xác định dạng của tứ giác OPQR? Tam giác ABC phải thỏa mãn điều kiện gì để OPQR là hình thoi?
Chứng minh AQ = OM.
Gọi G là trọng tâm của tam giác ABC. Chứng minh H, G, O thẳng hàng.
Vẽ ra ngoài tam giác ABC các hình vuông ABDE, ACFL. Gọi I là trung điểm của EL. Nếu diện tích tam giác ABC không đổi và BC cố định thì I di chuyển trên đường nào?
huyện thường tín
đề thi chọn học sinh giỏi
năm học 2007- 2008
Môn Toán lớp 8
Thời gian làm bài 150 phút
Câu 1: ( 5 điểm)
Cho biểu thức:
Rút gọn P.
Có giá trị nào của a, b để P = 0?
Tính giá trị của P biết a, b thỏa mãn điều kiện:
3a2 + 3b2 = 10ab và a > b > 0
Câu 2: ( 3,5 điểm)
Chứng minh rằng:
(n2 + n -1)2 – 1 chia hết cho 24 với mọi số nguyên n.
Tìm nghiệm nguyên của phương trình:
x2 = y( y +1)(y + 2)(y + 3)
Câu 3: ( 4 điểm) Giải phương trình:
c, x4 + x2 + 6x – 8 = 0
d,
Câu 4: (7,5 điểm)
Cho tam giác ABC, O là giao điểm của các đường trung trực trong tam giác, H là trực tâm của tam giác. Gọi P, R, M theo thứ tự là trung điểm các cạnh AB, AC, BC. Gọi Q là trung điểm đoạn thẳng AH.
Xác định dạng của tứ giác OPQR? Tam giác ABC phải thỏa mãn điều kiện gì để OPQR là hình thoi?
Chứng minh AQ = OM.
Gọi G là trọng tâm của tam giác ABC. Chứng minh H, G, O thẳng hàng.
Vẽ ra ngoài tam giác ABC các hình vuông ABDE, ACFL. Gọi I là trung điểm của EL. Nếu diện tích tam giác ABC không đổi và BC cố định thì I di chuyển trên đường nào?








khong co dap an ha thay
?????