Violet
Dethi

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 091 912 4899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

Kiểm tra 15'

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Võ Nhật Tuân
Ngày gửi: 17h:48' 13-02-2022
Dung lượng: 909.0 KB
Số lượt tải: 867
Số lượt thích: 0 người
QUAN HỆ VUÔNG GÓC.
Câu 1: Cho hình chóp S.ABC có đáy ABC là tam giácvvuông tại C, 
a) Chứng minh rằng: 
b) Gọi E là hình chiếu vuông góc của A trên SC. Chứng minh rằng: 
c) Gọi mp(P) đi qua AE và vuông góc với (SAB), cắt SB tại D. Chứng minh rằng: 
d) Đường thẳng DE cắt BC tại F. Chứng minh rằng: 
Giải: a) Ta có: 
Mặt khác, vì 
Từ (1) và (2) suy ra: 
b) Ta có: 
Theo a) 
Từ (3) và (4) suy ra: 
c) Ta thấy: 
Theo b) 
Trong mp(ADE) kẻ . Vì 
Từ (5) và (6) suy ra:  hay 
d) Từ 
Theo c) . Từ (7) và (8) suy ra: 
Câu 2: Cho hình chóp S.ABCD, đáy ABCD là hình vuông, tam giác SAB là tam giác đều, . Gọi I, F lần lượt là trung điểm của AB và AD. Chứng minh rằng: 
Giải: Ta có: 
Mặt khác, xét hai tam giác vuông ADI và DFC có: AI=DF, AD=DC. Do đó,  từ đó ta có: 
Hay 
Từ (1) và (2) suy ra: 

Câu 3: Cho hình chóp S.ABCD đáy ABCD là hình thang vuông tại A và B, , AD=2a, AB=BC=a. Chứng minh rằng: tam giác SCD vuông
Giải: Ta có: 
+ Gọi I là trung điểm của AD. Tứ giác ABCI là hình vuông. Do đó, (*). Mặt khác,  là tam giác vuông cân tại I nên:  (*).
Từ (*) và (**) suy ra:  hay  (2)
Từ (1) và (2) suy ra:  hay ∆SCD vuông tại C
Câu 4: Cho hình chóp đều S.ABCD đáy ABCD là hình vuông, E là điểm đối xứng của D qua trung điểm SA. Gọi M, N lần lượt là trung điểm của AE và BC. CMR: 
Giải: Gọi I, P lần lượt là trung điểm của AB và SA, O là giao điểm của AC và BD.
Ta có: 
Mặt khác, 
Mà  (vì: BPD là tam giác cân tại P và O là trung điểm của BD)
Từ (*) và (**) ta có: 
Từ (1) và (2) ta có: 
Câu 5: Cho hình chóp S.ABCD đáy ABCD là hình vuông, tam giác SAD đều, . Gọi M, N, P lần lượt là trung điểm của SB, BC và CD. Chứng minh rằng: 
Giải: Gọi I là giao diểm của AN và BP, H là trung điểm của AD, K là giao điểm của AN và BH.
Xét hai tam giác vuông ABN và BCP có: AB=BC, BN=CP. Suy ra,  mà  hay  (1)
Vì ∆SAD đều nên: .
Mặt khác, tứ giác ABNH là hình chử nhật nên K là trung điểm của HB hay 
Từ (*) và (**) suy ra: 
Từ (1), (2) suy ra: 
Câu 6: Cho hình chóp S.ABCD đáy ABCD là hình thoi , SA=SC. Chứng minh rằng: 
Giải:+ Ta có: (1) (giả thiết)
+ Mặt khác, (2) (SAC là tam giác cân tại A và O là trung điểm của AC nên SO là đường cao của tam giác)
+ Từ (1) và (2) suy ra: mà  nên 
Câu 7: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a, , . Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Chứng minh rằng: 
Giải:
+ Ta có: .
+ Xét tam giác vuông ABM có: . Xét tam giác vuông ACD có: . Ta có: 
Hay .
+ Từ (1) và (2) suy ra:  mà  nên 

Câu 8: Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, . Tính góc giữa hai đường thẳng SD và BC?
Giải: Ta có: BC//AD và . Do đó, .
Xét tam giác vSAD vuông tại A ta có: 
Vậy góc giữa hai đường thẳng SD và BC bằng 600
Câu 9: Cho hình lăng trụ ABC.A’B’C’ có độ dài cạnh bên bằng 2a, đáy ABC là tam giác vuông tại A, . Hình chiếu vuông góc của A’ lên mp(
 
Gửi ý kiến