Violet
Dethi

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 091 912 4899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

de thi thu dai hoc(cuc hay)

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Huy Quang
Ngày gửi: 21h:41' 01-08-2009
Dung lượng: 81.0 KB
Số lượt tải: 112
Số lượt thích: 0 người
ĐỀ THI THỬ TUYỂN SINH VÀO ĐẠI HỌC
MÔN TOÁN NĂM 2009 – LẦN 1


A. PHẦN DÀNH CHO TẤT CẢ THÍ SINH
Câu I (2 điểm) Cho hàm số 
a) Khảo sát sự biến thiên và vẽ đồ thị  của hàm số.
b) Biện luận theo m số nghiệm của phương trình 
Câu II (2 điểm)
a) Tìm m để phương trình  có nghiệm trên 
b) Giải phương trình 
Câu III (2 điểm)
a) Tìm giới hạn 
b) Chứng minh rằng 
Câu IV (1 điểm)
Cho a, b, c là các số thực thoả mãn  Tìm giá trị nhỏ nhất của biểu thức

B. PHẦN DÀNH CHO TỪNG LOẠI THÍ SINH
Dành cho thí sinh thi theo chương trình chuẩn
Câu Va (2 điểm)
a) Trong hệ tọa độ Oxy, cho hai đường tròn có phương trình  và  Lập phương trình tiếp tuyến chung của  và 
b) Cho lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh đều bằng a. Gọi M là trung điểm của AA’. Tính thể tích của khối tứ diện BMB’C’ theo a và chứng minh rằng BM vuông góc với B’C.
Câu VIa (1 điểm)
Cho điểm  và đường thẳng  Viết phương trình mặt phẳng  chứa  sao cho khoảng cách từ  đến  lớn nhất.
Dành cho thí sinh thi theo chương trình nâng cao
Câu Vb (2 điểm)
a) Trong hệ tọa độ Oxy, hãy viết phương trình hyperbol (H) dạng chính tắc biết rằng (H) tiếp xúc với đường thẳng  tại điểm A có hoành độ bằng 4.
b) Cho tứ diện OABC có  và  Tính thể tích tứ diện OABC.
Câu VIb (1 điểm)
Cho mặt phẳng  và các đường thẳng   Tìm điểm M thuộc d1, N thuộc d2 sao cho MN song song với (P) và đường thẳng MN cách (P) một khoảng bằng 2.
No_avatar

Hay thật đó!

 

 
Gửi ý kiến