Tìm kiếm Đề thi, Kiểm tra
Đề thi chọn HSG

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: In Ấn Thanh Vân
Ngày gửi: 08h:35' 30-07-2021
Dung lượng: 4.5 MB
Số lượt tải: 250
Nguồn:
Người gửi: In Ấn Thanh Vân
Ngày gửi: 08h:35' 30-07-2021
Dung lượng: 4.5 MB
Số lượt tải: 250
Số lượt thích:
1 người
(Phạm Thị Thu Hà)
ĐỀ SỐ 1
Bài 1 (4.0 điểm) : Tính giá trị biểu thức
a/
b/
Bài 2 (4.0 điểm) :
a/ Tìm x, y nguyên biết : 2x (3y – 2) + (3y – 2) = -55
b/ Chứng minh rằng :
Bài 3 (3.0 điểm ) : Cho biểu thức :
a/ Tìm n để A nhận giá trị nguyên.
b/ Tìm n để A là phân số tối giản
Bài 4 (3.0 điểm) : Tìm số nguyên tố ( a > b > 0 ), sao cho là số chính phương
Bài 5 (4.0 điểm) : Cho nửa mặt phẳng bờ AB chứa hai tia đối OA và OB.
a/ Vẽ tia OC tạo với tia OA một góc bằng ao, vẽ tia OD tạo với tia OCC một góc bằng (a + 10)o và với tia OB một góc bằng (a + 20)o
Tính ao
b/ Tính góc xOy, biết góc AOx bằng 22o và góc BOy bằng 48o
c/ Gọi OE là tia đối của tia OD, tính số đo góc kề bù với góc xOD khi góc AOC bằng ao
Bài 6 (3.0 điểm) : Cho
a/ Chứng minh rằng A chia hết cho 24
b/ Chứng minh rằng A không phải là số chính phương.
---------------------------------- Hết ----------------------------------
ĐÁP ÁN
CÂU
NỘI DUNG
ĐIỂM
Câu 1
a/
2.0
b/
2.0
Câu 2
a/ Tìm x, y nguyên biết : 2x (3y – 2) + (3y – 2) = -55
=>(3y – 1)(2x + 1) = -55
=> (1)
Để x nguyên thì 3y – 2 ( Ư(-55) =
+) 3y – 2 = 1 => 3y = 3 => y = 1, thay vào (1) => x = 28
+) 3y – 2 = 5 => 3y = 7 => y = (Loại)
+) 3y – 2 = 11 => 3y = 13 => y = (Loại)
+) 3y – 2 = 55 => 3y = 57 => y = 19 , thay vào (1) => x = -1
+) 3y – 2 = - 1 => 3y = 1 => y = (Loại)
+) 3y – 2 = -5 => 3y = -3 => y = -1, thay vào (1) => x = 5
+) 3y – 2 = -11 => 3y = -9 => y = -3 , thay vào (1) => x = 2
+) 3y – 2 = -55 => 3y = -53 => y =(Loại)
Vậy ta có 4 cặp số x, y nguyên thoả mãn là
(x ; y ) = (28 ; 1) , (-1 ; 19) , (5 ; -1), (2 ; -3)
2.0
b/ Chứng minh rằng :
Ta có
(ĐPCM)
2.0
Câu 3
Cho biểu thức :
a/ Tìm n để A nhận giá trị nguyên.
Ta có :
(2)
A nguyên khi n – 3 (Ư(4) = => n (
1.0
b/ Tìm n để A là phân số tối giản
Ta có : (Theo câu a)
Xét n = 0 ta có phân số A = là phân số tối giản
Xét n ( 0 ; 3
Gọi d là ước chung của (n + 1) và (n – 3)
=> (n + 1) d và (n – 3) d
=> (n + 1) - (n – 3) chia hết cho d => 4 chia hết cho d => d = (1 ; (2; (4
=> d lớn nhất bằng 4 => A không phải là phân số tối giản
Kết luận : Với n = 0 thì A là phân số tối giản
1.0
Câu 4
Tìm số nguyên tố ( a > b > 0 ), sao cho là số chính phương
Ta có :
Vì => a,b => 1 ( a- b ( 8
Để là số chính phương thì a – b = 1; 4
+) a – b = 1 (mà a > b) ta có các số là : 98 ; 87 ; 76; 65; 54 ; 43; 32; 21
Vì là số nguyên tố nên chỉ có số 43 thoả mãn
+) a – b = 4 (mà a > b) ta có các số là : 95 ; 84 ; 73; 62; 51
Vì là số
Bài 1 (4.0 điểm) : Tính giá trị biểu thức
a/
b/
Bài 2 (4.0 điểm) :
a/ Tìm x, y nguyên biết : 2x (3y – 2) + (3y – 2) = -55
b/ Chứng minh rằng :
Bài 3 (3.0 điểm ) : Cho biểu thức :
a/ Tìm n để A nhận giá trị nguyên.
b/ Tìm n để A là phân số tối giản
Bài 4 (3.0 điểm) : Tìm số nguyên tố ( a > b > 0 ), sao cho là số chính phương
Bài 5 (4.0 điểm) : Cho nửa mặt phẳng bờ AB chứa hai tia đối OA và OB.
a/ Vẽ tia OC tạo với tia OA một góc bằng ao, vẽ tia OD tạo với tia OCC một góc bằng (a + 10)o và với tia OB một góc bằng (a + 20)o
Tính ao
b/ Tính góc xOy, biết góc AOx bằng 22o và góc BOy bằng 48o
c/ Gọi OE là tia đối của tia OD, tính số đo góc kề bù với góc xOD khi góc AOC bằng ao
Bài 6 (3.0 điểm) : Cho
a/ Chứng minh rằng A chia hết cho 24
b/ Chứng minh rằng A không phải là số chính phương.
---------------------------------- Hết ----------------------------------
ĐÁP ÁN
CÂU
NỘI DUNG
ĐIỂM
Câu 1
a/
2.0
b/
2.0
Câu 2
a/ Tìm x, y nguyên biết : 2x (3y – 2) + (3y – 2) = -55
=>(3y – 1)(2x + 1) = -55
=> (1)
Để x nguyên thì 3y – 2 ( Ư(-55) =
+) 3y – 2 = 1 => 3y = 3 => y = 1, thay vào (1) => x = 28
+) 3y – 2 = 5 => 3y = 7 => y = (Loại)
+) 3y – 2 = 11 => 3y = 13 => y = (Loại)
+) 3y – 2 = 55 => 3y = 57 => y = 19 , thay vào (1) => x = -1
+) 3y – 2 = - 1 => 3y = 1 => y = (Loại)
+) 3y – 2 = -5 => 3y = -3 => y = -1, thay vào (1) => x = 5
+) 3y – 2 = -11 => 3y = -9 => y = -3 , thay vào (1) => x = 2
+) 3y – 2 = -55 => 3y = -53 => y =(Loại)
Vậy ta có 4 cặp số x, y nguyên thoả mãn là
(x ; y ) = (28 ; 1) , (-1 ; 19) , (5 ; -1), (2 ; -3)
2.0
b/ Chứng minh rằng :
Ta có
(ĐPCM)
2.0
Câu 3
Cho biểu thức :
a/ Tìm n để A nhận giá trị nguyên.
Ta có :
(2)
A nguyên khi n – 3 (Ư(4) = => n (
1.0
b/ Tìm n để A là phân số tối giản
Ta có : (Theo câu a)
Xét n = 0 ta có phân số A = là phân số tối giản
Xét n ( 0 ; 3
Gọi d là ước chung của (n + 1) và (n – 3)
=> (n + 1) d và (n – 3) d
=> (n + 1) - (n – 3) chia hết cho d => 4 chia hết cho d => d = (1 ; (2; (4
=> d lớn nhất bằng 4 => A không phải là phân số tối giản
Kết luận : Với n = 0 thì A là phân số tối giản
1.0
Câu 4
Tìm số nguyên tố ( a > b > 0 ), sao cho là số chính phương
Ta có :
Vì => a,b => 1 ( a- b ( 8
Để là số chính phương thì a – b = 1; 4
+) a – b = 1 (mà a > b) ta có các số là : 98 ; 87 ; 76; 65; 54 ; 43; 32; 21
Vì là số nguyên tố nên chỉ có số 43 thoả mãn
+) a – b = 4 (mà a > b) ta có các số là : 95 ; 84 ; 73; 62; 51
Vì là số
 
Các ý kiến mới nhất