Violet
Dethi

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Đề thi, Kiểm tra

Đề cương ôn thi

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Văn Hiển
Ngày gửi: 18h:15' 04-03-2022
Dung lượng: 500.4 KB
Số lượt tải: 178
Số lượt thích: 0 người
ĐẠI SỐ
CHƯƠNG I. CĂN BẬC HAI, CĂN BẬC BA
Số a dương (a > 0) có 2 căn bậc 2:
𝑎 và −
𝑎
𝑎
là căn bậc hai số học)
Điều kiện để
𝐴 có nghĩa: A ≥ 0
So sánh: Với a, b ≥ 0 có: a > b
𝑎
𝑏

Ví dụ: 5 > 3
5
3

Với mọi a có
𝑎
2=|𝑎|
+ Nếu a > 0 thì
𝑎
2=𝑎

21
2
21=21
+ Nếu a < 0 thì
𝑎
2=− 𝑎
−7
2−7= −7=7
Phép nhân, phép chia và phép khai phương
Với a, b ≥ 0, ta có:

𝑎.𝑏=
𝑎
𝑏


𝑎
𝑏=
𝑎
𝑏

Đưa thừa số ra ngoài dấu căn:
𝐴
2
𝐵=|𝐴
𝐵

+ Nếu A, B ≥ 0 thì
𝐴
2
𝐵= 𝐴
𝐵

+ Nếu A < 0, B ≥ 0 thì
𝐴
2
𝐵= −𝐴
𝐵

Đưa thừa số vào trong dấu căn
+ Nếu A, B ≥ 0 thì
𝐴
2
𝐵= 𝐴
𝐵

+ Nếu A < 0, B ≥ 0 thì
𝐴
2
𝐵=− 𝐴
𝐵

Khử mẫu, trục căn thức ở mẫu
/
/
/
/
/
Căn bậc ba có những phép toán như căn bậc hai
/

CHƯƠNG II. HÀM SỐ BẬC NHẤT
Dạng tổng quát
+ Lớp 7: y = ax (a ≠ 0)
+ Lớp 9: y = ax + b (a ≠ 0)
Điều kiện để y = ax là một hàm số: a ≠ 0
Đồ thị hàm số
/
Đồng biến, nghịch biến
- Đồng biến trên R khi a > 0
- Nghịch biến trên R khi a < 0
Vị trí tương đối của hai đường thẳng:
Song song:a ≠ 0; a’≠ 0; a = a’; b≠ b’
Trùng nhau:a ≠ 0; a’ ≠ 0; a = a’; b= b’
Cắt nhau:a ≠ 0; a’ ≠ 0; a ≠ a’; b∈ R
Vuông góc với nhau:a.a’ = -1
Cắt nhau tại tung độ gốc:a ≠ 0; a’ ≠ 0; a ≠ a’; b = b’
Góc tạo vởi đường thẳng y = ax + b và trục Ox/
Với a > 0 thì góc alà góc nhọn (00
a1< a2< a3(a1/
Với a < 0 thì góc alà góc tù (900 a1< a2< a3(a1HÌNH HỌC
CHƯƠNG I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG
Hệ thức về cạnh và đường cao trong tam giác vuông
/
HT1: Bình phương cạnh góc vuông bằng tích cạnh huyền và hình chiếu.
b2 = ab’ hay AC2 = BC.HC
c2 = ac’ hay AB2 = BC.BH
HT2: Bình phương đường cao bằng tích hai hình chiếu.
h2 = b’c’
AH2 = CH.HB
HT3: Tích hai cạnh góc vuông bằng tích cạnh huyền và đường cao.
bc = ah
AC.AB = BC.AH
HT4: Nghịch đảo bình phương đường cao bằng tổng các nghịch đảo của bình phương hai cạnh góc vuông.

1

2
1
𝑏
2
1
𝑐
2


1
𝐴𝐻
2
1
𝐴
𝐶
2
1
𝐴
𝐵
2


Tỉ số lượng giác
/
sin a = Đ/H = AC/BC
cos a = K/H = AB/BC
tan a = Đ/K = AC/AB
cot a = K/Đ = AB/AC

Tính chất
Nếu hai góc ( và ( phụ nhau (( + ( = 900) thì:
sin ( = cos (
tan ( = cot (
Ví dụ: sin 200 = cos 700
tan 360 = cot 540
Hệ thức về cạnh và góc trong tam giác vuông
/
Trong tam giác vuông, mỗi cạnh góc vuông bằng:
+ Cạnh huyền nhân sin góc đối hoặc cos góc kề
b = a.sin B (AC = BC.sin B)
c = a.cos B (AB = BC.cos B)
+ Cạnh góc vuông kia nhân tan góc đối hoặc cot góc kề.
b = c.tan B (AC = AB.tan
 
Gửi ý kiến